
.DA8.r ASCUET IS FTC ABIG ABFRCMUE-T / /DATA-STRUCTURING OPERATIONS IN CONCURRENT COMPUTATIONS.1UI
OCT 79 0 L ISAMAN

UNCLASSIFIED MIT/LCS/TR224 N

7 ,0 A 1"1 3 A S UE TT N O E CH C RDE E ES FO MUEE E E EE69/

-3 b

~IIIJJL2 J4

IIII 8

BINSTITUTE OF

COPTRSCEC ECNLG

NlTUS/f -2

DATA-STRUCTURING OPERATIONS IN CONCURRENT COMPUTATIONS * C

by

0;vid Lee/Iaman/

David Lee Isanan 1979

Massachusetts Institute of (:4wo ogy

Laboratory for Computer Sci ence

Cambridge, Massachusetts i.

02139

d : ¢ !w 2 W-/

.. _

-2-

DATA-STRUCTURING OPERATIONS IN CONCURRENT COMPUTATIONS

by

DAVID LEE ISAMAN

Submitted to the Department of Electrical Engineering and Computer Science
on July 23, 1979 in partial fulfillment of the requirements for the degree
of Doctor of Philosophy.

ABSTRACT

This thesis proposes operational specifications for a Structure
Memory (SM). A specialized hardware component of a general-purpose
computing system, the SM would directly execute operations on dynamically-

structured data stored in it. The computing system is assumed capable of
exploiting program concurrency at the machine-instruction level For
explanatory purposes, the proposed structure operations ar e-esented in
the context of the data flow model-of concurrent computation.

"= Concurrency among a set of program instructions which all examine or

modify the same structure must be carefully controlled, if the program is
to be determinate. The first of two major contributions of the thesis is

a combination hardware/software discipline which affords maximal concur-
rency consistent with determinacy. Its key feature is that the SM will
not return a given pointer until certain previously-returned pointers to
the same structure are no longer available as operands.

The second major contribution is the entry-execution model of con-
current computation. Reversing the emphasis of most previous work, this

model concentrates on the operations performed by instructions, while
abstracting away details of how operands are passed among them and how

their execution order is determined. The essence of structure operators 7
that the result of an execution of one may depend on the input to previous
executions of that and other operators,-* is given a natural expression in
the new model. A proof of sufficient ,tp!Rgiy of a
program containing structure operator is made more generally applicable
through use of the entry-execution model as its medium.

Thesis Supervisor: Jack B. Dennis, Professor of Computer Science and
Engineering

Keywords: data flow architecture, determinacy, models of concurrent
computations, structure memory

f -3-
ACKNOWLEDGEMENTS

The continued support of Professor Jack B. Dennis through the long

and complicated course of this thesis is gratefully acknowledged. His

efforts as thesis supervisor contributed substantially to the quality and

completeness of the final product. Thanks are also extended to Clement

Leung, Ken Weng, and Professor Barbara Liskov for their thoughtful com-

ments on early drafts. The long-distance cooperation of Marilyn Pierce

of the Department Graduate Office was invaluable.

Special appreciation goes to two people. The early-graduate-career

mentorship of Professor Michael Dertouzos fostered a strong professional

self-confidence, which has been a great source of internal resolve. The

love and support of Janet McAfee has made the work of completing this

thesis much more bearable.

The work reported herein was partially supported by the Electrical

Engineering and Computer Science Department of the University of Cali-

fornia, San Diego. ,j

i.Accession For

i ,

p.'

I

DEDICATION

To all those whose caring

showed me there is more to life

than writing a thesis.

TABLE OF CON4TENTS

Abstract... 2

Ackowlegmnts .. 3

Dedication .. 4

Table of Contents... o.... 5

List of Figures............ 8

Chapter 1 Introduction.......... 9

1.1 Motivation...............................-.............. 10
1.2 Plan of the Thesis .. 22
1.3 Related Work ... 27

Chapter 2 Structure Operations and Concurrency %.......... 4 30

2.1 The Basic Data Flow Model o............. 30
2.1.1 Data-Flow Programs 31
2.1.2 State Transitions 36

2.2 Structure Operations ... 43
2.2.1 The Heap 44
2.2.2 The Data-Flow Languages with Structures 47
2.2.3 Formal Semantics .. 55

2.3 Computations Over Structures.............................. 59
2.3.1 A Simple LBV Program..................................... 60
2.3.2 The LBSProgram AlterS 66
2.3.3 Analysis of Execution Time 71

2.4 Equivalence and Functionality 76
2.4.1 Functionality ... 77

2.4.2 Equivalence ... 83

-6-

Chapter 3 Controlling Structure Concurrency 86

3.1 Interference ... 87
3.1.1 Potential Interference in LBS 89
3.1.2 Deteruinacy ... 93

3.2 Guaranteeing Determinacy...................................... 99
3.2.1 Blocking Groups... 100
3.2.2 Sequencing Within a Blocking Group 105
3.2.3 Sequencing Firings in Distinct Blocking Groups 11ll

3.3 The Language IV ... 118
3.3.1 The Modified Data-Flow Interpreter 118
3.3.2 The Determinacy Condition 126

3.4 The Translation ... 135

Chapter 4 The Entry-Execution Model 149

4.1 Historical Perspective....................................... 150
4.2 Definition .. 156

4.2.1 The Abstract Programs.................................... 157
4.2.2 The Computations.. 160
4.2.3 Properties o......... 165
4.2.4 Pictorial Representation 166

4.3 An Entry-Execution Model of Data-Flow Languages 167
4.3.1 The Construction of EE(L,I).................................167
4.3.2 Properties of Models of Specific Data-Flow Interpreters .. 178

Chapter 5 Structure-as-Storage Models 193

5.1 The Constraints ... 194
5.1.1 Input/Output Types o......... o...............195
5.1.2 Pointer Transparency.................................... 196
5.1.3 The Concept of Reach.................................... 197
5.1.4 The Atomic Output Constraint 201
5.1.5 The Structure Output Constraint 0................ 204
5.1.6 Initial Str'jctures 206
5.1.7 The First/Next Output Constraint 212
5.1.8 The Unique Pointer Generation Constraint 213

5.2 ThelReap Determined by aComputation.......................... 217
5.2.1 Mode Activation Records 218
5.2.2 The Contents Determined by a Computation 229
5.2.3 Sunmary and Validation 235

5.3 Validation of the S-S Model 242
5.3.1 Input/Output Types and Pointer Transparency 245
5.3.2 Canonical Computations 256
5.3.3 The Qualifying Relationships 266
5.*3.4 Conclusion 276

-7-

Chapter 6 A Generalized Determinacy Proof 281

6.1 The Definition... ... 282
6.2 The Axioms .. 284
6.3 The Basic Requirements for Equivalence of Computations290
6.4 The Deteriminacy Proof.. 313

Chapter 7 Proof of the Functionality of LD 323

7.1 Verification that EE(LDM) is an S-S Model324
7.1.1 A Comparison of Standard and Modified States 326
7.1.2 Pointer Transparency.................................... 329
7.1.3 Relation Between Canonical Computations in EE(LD,M)

and EE(LBS,S).. 342
7.2 Verification that EE(LD,M) Satisfies the Determinacy Axioms 353

7.2.1 The First Four Axioms 353
7.2.2 Freedom From Conflict 356
7.2.3 Commutativity... 365
7.2.4 Persistence... 384

7.3 Determinacy and Functionality 414

Chapter 8 Summary and Conclusions 448

8.1 Summary ... 448
8.2 Evaluation .. 452

8.2.1 The Scheme ... 453
8.2.2 The Model .. 465

8.3 Suggestions for Further Research 469
8.3.1 Open Questions.. 469
8.3.2 Extensions ... 471

8.4 Conclusions 480

Appendix A Proof of Theorem 2.4-1 482

Appendix B Proof of Theorem 3.4-2 486

Appendix C Proof of Lemma 4.3-2.................................. 498

Appendix D Proofs from Chapter 5 503

Appendix E Proofs from Chapter 7 536

Bibliography... 561

Biographical Note.. 565

-8-

LIST OF FIGURES

1.1-1 A One-Dimensional Array.....................................1
1.1-2 A More General Structure 11
1.1-3 Combining Two Dynamic Data Structures 14
1.1-4 Proposed Computer System Organization......................... 16

2 .1-1 Data-Flow Program Arcs 32
2.1-2 Actor Types in a Basic Data-Flow Language 33
2.1-3 A Simple Data-Flow Program 35
2.1-4 Two Equivalent Program........... 37
2.1-5 Firing Rules for Data-Flow Actors 39
2.1-6 The Conditional Construct 41
2.2-1 A Heap 44
2.2-2 The Structure Operators..o.................................... 49
2.2-3 Equivalence of LBS to LBV o.......o..... o............... 54
2.3-1 The LBV Program AlterV....................................... 61
2.3-2 An Initial State S for AlterV o...............62
2.3-3 A State Sequence for AlterV o............. o................63
2.3-4 The LBS Program AlterS...................................... 67
2.3-5 A State Sequence for AlterS 69
2.3-6 A State in an Alternative Sequence for AlterS 70
2.3-7 The Programs AlterV2 and AlterS2 o.................72

3.1-1 An Example of Interference 88
3.2-1 A Further Example of Interference 103
3.2-2 The Program AlterS1... 108
3.2-3 Operator Substitutions in Translating from LVto....o.......o..110
3.4-1 Operator Substitutions in Translating from LBV to LDo138
3.4-2 The Program AlterS2 139

7.1-1 A Hung-Up odified State 343
7.1-2 A Critical Hang-Up.. 345

8.2-1 A Data Flow Processor....................................... 454
8.3-1 Automatic Copying... 478

-9-

Chapter 1

Introduction

This thesis proposes specifications for a Structure Memory (SM).

A specialized hardware component of a general-purpose computing system,I the SM would directly execute operations on data structures stored in it.
The software overhead incurred in molding complex structures to conform

to the elementary organization of a conventional random-access memory

would thereby be greatly reduced.

Z Brief consideration of possible SM implementations suggests a

potential for executing several operations concurrently (during the

j same time interval). Exploitation of this ability could result in

enhanced SM performance. Unfortunately, concurrent operations on data

structures can cause different runs of a program on the same input to

produce different outputs. Therefore, techniques must be found for

controlling any potential SM concurrency to prevent this intolerable

unpredictability. The first of two major results of the thesis is a

combination hardware/software discipline making it easy to eliminate

all dangerous concurrency at the sacrifice of little safe and productive

concurrency.

The second, possibly more significant result is the entry-execution

model. This radically-different model of concurrent programming reverses

the emphasis of existing models, concentrating on the operations performed

by instructions, while abstracting away details of how operands are passed

among them and how their execution order is determined. The generality of

-10-

the correctness proof for the new concurrency-control discipline

testifies to this model's usefulness.

Section 1.1 below presents the argument for a hardware SM. It

shows how the SM may be able to support concurrent operations and how

this may have undesirable consequences. Section 1.2 presents a

chapter-by-chapter overview of the logical progression of steps taken

in ths thesis. Section 1.3 concludes with a brief survey of related work.

1.1 Motivation

An important part of many computer programs is the manipulation of

data structures. One way of viewing a data structure is x- a set of

ordered pairs (s,e), in which s is a selector and e is an element of the

structure. A selector is an atomic datum (typically either an integer or

a character string) which serves to distinguish its associated element

from all others in the structure; therefore, no two ordered pairs in one

structure may contain the same selector. An element is either an atomic

datum or another data structure.

Figure 1.1-1 portrays the simplest type of data structure, a one-

dimensional array, in a graphical representation. All elements of an

array are atomic data of the same type (e.g., integer, real, character).

The selectors form a consecutive sequence of integers; in the example,

those from 1 through 4. Each element is depicted as a node at the lower

level of the graph in the Figure; a node representing an atomic element

has that atom written inside it. The single node at the upper level of

the graph represents the structure as a whole. For each ordered pair

(s,e) in the structure, a branch labelled with s is drawn from the node

_______ / I
.-

A One-Dimensionial Array

Figure 1.1-1

A More General Structure

Figure 1.1-2

-12-

representing the whole structure to the node representing the element e.

Figure 1.1-2 displays a more complex data structure. The elements of this

are of different types: an integer, a real, and another structure, an

array of three elements. Representing every structure as a separate node

has allowed a consistent graphical treatment of both atoms and structures

as elements. This second example also has more general selectors,

encompassing character strings as well as integers.

The most primitive operation on a data structure is to'determine its

elements. This operation, called Select, takes a structure and a selector,

and returns the element paired with that selector in the structure. With

data structures defined as above, however, a single, general Select oper-

ation may pose a hazard: The element returned may be input to other

Select operations if it is a structure, but not if it is an atom;

conversely, it may be input to data-processing operations (such as arith-

metic) if it is an atom, but not if it is a structure. Of the several

alternative methods of eliminating this hazard, the one chosen is to

redefine a data structure, based on its graphical representation. Atomic

elements and structures alike are depicted as nodes. Each node has either

(1) an atom associated with it, or (2) labelled branches emanating from it.

A data structure is correspondingly redefined to be a set containing (1) an

atom, (2) some selector-element pairs, where an element now is always a

structure, or (3) both. A structure according to the old definition is

made a structure according to the new definition by replacing each atom

with the set containing that atom.

With this revised concept of data structure, a Select operation can

take any structure and any selector, and always return a structure.

, !

-13-

If the input structure has no ordered pair containing the input selector,

an exception (similar to an arithmetic overflow) occurs, whether or not

the structure contained only an atom. A second operation, Fetch, retrieves

the atom in a structure; applying it to a structure which has no atom

results in an exception. Structure-altering operations include Assign,

which replaces the atom in a structure (or adds one if there was none).

The set of operations Select, Fetch, and Assign is sufficient to

handle static data structures. A static structure is one whose graph

representation can never change shape; only the atoms inside the nodes

can be altered. Frequently, however, it is desirable that an unpredictable

amount of input data be retained in a structured form. This requires the

ability to manage dynamic data structures, the shape of whose graphs may

be altered by the addition and deletion of nodes and branches. A prime

example of this is the symbol table in a programning-language processor

(compiler or interpreter). Each element e of a symbol table is a structure

describing the linguistic attributes of one symbol T in the program being

processed; the selector paired with e is most conveniently the symbol T

itself. Neither the elements nor the selectors in the symbol table are

known when the language processor starts; hence the need for operations

to create new structures from existing structures and new selectors.

The first encounter with each new symbol in the program triggers a

sequence of steps to add it to the symbol table. Figure 1.1-3 pictures

what the last step might be. Part (a) shows schematically the existing

symbol table and the smaller structure constructed to describe the new

symbol. The final step is the creation, in a single operation, of the

new symbol table in part (b). (Whether or not the old symbol table

-14-

Before

(a)

After

(b)

Cobining Two Dynamic Data Structures

Figure 1.1-3

I

-15-

continues to exist apart from the new one is a key issue of the thesis.

The subtle distinction will be discussed later in this chapter.) Also

useful are an operation to create a new structure by removing an element

from an existing one and operations to enumerate all of the selectors in

a structure.

The only memory technology in which it currently is feasible to store

large amounts of information is the random-access memory (RAM). A RAM is

organized as a one-dimensional (or possibly two-dimensional) array, a

homogeneous collection of storage cells, each capable of retaining one

atom, with selectors (addresses) which form a sequence of consecutive

integers. RAM hardware can support static data structures; th.t is, it

can directly execute operations analogous to Select, Fetch, and Assign,

with the same speed with which it accesses any stored atom. Support of

dynamic data structures, however, necessitates elaborate software systems

which are expensive, first to write and verify, and then to execute.

Great bodies of literature have grown up concerning software

approaches to the two major aspects of implementing dynamic data

structures:

1. Storage allocation - deciding which set of physical cells shall

store each newly-created structure, and deciding when those cells

can be re-used because the structure they store can no longer be an

operand to any operation.

2. Searching - storing the set of selectors in a structure so that the

Select operation can be performed quickly (e.g., in a hash table).

Even with the most well-written software, dynamic data-structuring

operations are several times slower than basic RAM accesses.

-16-

These observations inspire consideration of the possibilities and

potentialities of shifting the support of dynamic data structures from

software to a hardware Structure Memory (SM). The SM would serve as an

adjunct to the RAM in a computing system, as diagram.ed in Figure 1.1-4.

The RAM continues to store programs, non-structured data, and static

structures, while the SM directly executes operations on dynamic struc-

tures. The Control Unit (CU) fetches and decodes instructions from the

RAM, finds their operands, and sends these to the appropriate system

component: the RAM, the SM, or a functional unit (for data-processing

and 1/0 operations).

Random-

Access

Memory

FunctionalCoto 00Sruue

UnitsUnt ---- Meoy()

Proposed Computer System Organization

Figure 1.1-4

-17-

There are ample precedents for this development. The performance of

many small mini-computers can be improved by shifting the execution of

floating-point operations from software routines into a hardware functional

unit [26). The importance of the stack, a simple dynamic structure, has

prompted the inclusion in many instruction sets of special push and pop

operations, which replace sequences of two or three conventional instruc-

tions [36]. In the SYMBOL machine, strings are manipulated directly by a

separate unit called the Memory Controller (291. There are machine

instructions to fetch an addressed group of eight bytes and return the

address of the following (or preceding) group in the string, and to append

or insert a group into a string. A structure may be formed by storing the

address of one string in another string. String storage space is allocated

automatically (by hardware) as it is needed, and a single instruction will

deallocate all storage occupied by a string, even if it is structured.

The SM envisioned here would extend the concept of this Memory Controller

to encompass the manipulation of structures with selectors (so that a

program need not fetch and search an entire structure to find a given

element).

To minimize the amount of information which must be moved between the

CU and the SM, all dynamic structures will be stored within the SM.

References to stored structures will be communicated outside the SM by

means of pointers. A pointer is an arbitrary bit string which is

associated by the SM with a unique structure stored therein. Pointers

have no intrinsic meaning outside the SM; therefore, it is important

that other units of the computing system merely pass pointers around,

never attempting to perform operatio~ns (e.g., arithmetic) on them.

-18-

The implementation of an SM would probably store a structure by

physically associating with its pointer a content. The content for the

structure fv,(sl,e1),...,(s n,en) consists of a bit string encoding of the

atom v and the ordered pairs (slP),...,(SnPn), where pi is the pointer

to ei, iul,...,n. The entire content would be stored in physically-

adjacent locations, to minimize the effort required to search it for a

given selector. This implies that a content may have to be moved to

another set of physical locations, if it or another stored content changes

size (through an operation such as that illustrated in Figure 1.1-3), or

if the storage space becomes fragmented [10]. Therefore, the pointer

associated with a structure cannot be treated simply as an unchanging

physical address of the structure's content. A mobile content can be

located only if there is a key stored within it (or adjacent to it) by

which it can always be recognized; the obvious choice for a key is the

pointer to the structure for which this is the content. The SM therefore

must contain an associative memory, one which can compare a given key (the

search key) against all stored keys and return the locations(s) of any

matching key(s). The associative memory would return the location storing

that key; the content of the structure is then known to occupy locations

adjacent to that.

There are two basic techniques for implementing an associative

memory: parallel and serial. In the former, all stored keys are compared

against the search key at the same time; in the latter, the stored keys

are compared one at a time. The parallel method results in the fastest

access time, but requires much more hardware: one comparator circuit per

stored key. The mount of comparator hardware needed by the serial

.

-19-

technique is negligible, but finding a match may entail making a complete

pass through the memory, comparing against every stored key.

The performance of the inexpensive serial associative memory can be

greatly improved by adding comparators dedicated not to different stored

keys, as in the fully-parallel approach, but to different search keys f18J.

Then as the stored keys are retrieved, one-by-one, from the serial memory,

each can be compared to several search keys simultaneously. The guaranteed

number of matches per complete pass through the memory is thus increased

from one to the number of search keys available at the start of the pass.

The search keys given to the associative memory in the SM are pointer

operands of structure operations. Exploiting the ability to search for

several keys at once requires the following: the operands of executions of

several operations can be sent out from the CU to the SM without the

results of any of the executions having been returned; in this case, those

operations are defined to be concurrent. The simplest example of concur-

rent operations is seen in the evaluation of the expression (a+b)*(c+d).

The operands of the multiplication cannot be sent out until the results of

the two additions have been returned; therefore, the multiplication is not

concurrent with either of the other operations. However, the operands of

both additions can be sent out before the results of either have been

returned; i.e., the two additions are concurrent.

There are at least three possible reasons for which concurrent oper-

ations may be desirable or necessary: In a very slow device such as a

serial associative memory, the total time required to execute a set of

concurrent operations can be reduced by a factor as large as the size of

the set. While a reduction this large is by no means assured, total

-20-

execution time does generally decrease as the number of concurrent oper-

ations increases. Secondly, a fully-parallel associative memory might

provide structure operations which are as fast as any other operations, but

between executions, this expensive device would sit idle. As the number of

concurrent operations increases, the number of operations executed per unit

time increases; this greater utilization can be a strong economic incentive

for concurrency. Finally, there are applications which are inherently

concurrent, such as real-time systems responding to external events. Since

these events can occur in any order, the operations they invoke must be

able to execute in any order.

These arguments for concurrency are offset in the case of structure

operations by a peculiar danger: concurrency may compromise a program's

functionality. A functional program is one which, every time it is run on

the same inputs, produces the same outputs. The simplest example of the

danger is the case of a Fetch and an Assign operation which necessarily

operate on the same structure. If these are concurrent operations, then

the order in which they are executed by the SM is not fixed. If the Fetch

is executed first, it returns the atom in the structure's original content;

if it is executed second, it returns the new atom stored by the Assign

execution. Thus, in two runs of a program on the same input, the same

execution may have a different result, which may in turn lead to different

program outputs. I.e., concurrent operations on the same structure may

cause a program to be non-functional.

The goal of the thesis is to specify a Structure Memory which supports

concurrent operations in such a way that it is easy to guarantee that they

do not induce non-functionality. Nothing more will be offered on the

-21-

subject of implementing the SM; the only concern is for specifying an oper-

ation's results returned from the SM as a function of the preceding

sequence of operands sent to the SM. The primary design criterion is to

maximize the allowable concurrency of structure operations, consistent with

functionality. The secondary criterion is to minimize the computational

complexity of distinguishing functional from non-functional programs, if

both are possible.

It is assumed that the SM is used in conjunction with a CU in which

any two structure operations which could be concurrent are concurrent.

The capabilities of a CU V.is-a-vis concurrent operations are expressed

abstractly by a model of concurrent (or parallel) computation, consisting

usually of two components:

1. A parallel-programming language, a collection of programs each

consisting of (a) a set of instructions, (b) a diagram of where an

instruction gets its operands and where its results go (the data

flow), and (c) a diagram of which instructions' results must be

returned before which other instructions' operands can be sent

(the control flow).

2. A method for generating descriptions, to some level of detail, of

the possible behaviors of the CU (computations) when given any

program in the language and any input to that program.

Although for clarity, results are derived using a specific model, it is

desired that the SM specification be expressed as abstractly as possible,

i.e., divorced from any particular model of concurrent computation.

-22-

1.2 Plan of the Thesis

Chapter 2 contains a precise statement of the goal of the thesis and

of the approach taken to achieving that goal. It also formally introduces

the data flow model of concurrent computation (so called because the same

diagram which shows a program's data flow also specifies its control flow).

Data flow was chosen as the concrete model in which to derive results for

three reasons: (1) it provides the simplest and most natural expression

of concurrency, (2) all data-flow programs having no structure operations

are automatically functional (12], and (3) there are several efforts under-

way to implement a Control Unit based on the data flow model [4, 8, 15,

20, 33, 351.

The mechanism for generating computations is a non-deterministic

automaton called an interpreter. The interpreter is defined by (1) a set

of possible states, and (2) a non-deterministic state-transition rule,

specifying how any state is transformed into any of one or more possible

next states. A program P together with an input to P establishes an

initial interpreter state. The computations are the possible state

sequences generated from this initial state by successive applications of

the state-transition rule. Every final state of one of these sequences

describes a program output for P; if P is non-functional, then different

state sequences starting in the same initial state may lead to different

final states.

Several data-flow languages and interpreters are developed in the

thesis. The first language described is the basic data-flow language LB.

This is assumed to include an unspecified complement of operations on

-23-

atomic data, as wel as control constructs for conditional branching and

looping. The two languages LBV and LBS are then formed by augmenting LB

with two similar systems of data-structuring operations: the Structure-as-

Value (S-V) and the Structure-as-Storage (S-S) systems. Computations are

generated from programs in all three languages by the single standard

data-flow interpreter.

The S-V and S-S systems illustrate two approaches to achieving the

goal of the thesis. The fundamental difference between them can be

explained by reference to Figure 1.1-3. Part (a) of the Figure shows two

structures which are to be "combined" into the single structure of part

(b). The S-S system includes an operation (Update) which will change the

stored content of the larger original structure m, adding an ordered pair

consisting of the selector 'd' and the pointer to the smaller structure.

Thus the same pointer (to m) points to different structures at different

times. The S-V system, on the other hand, contains no operation which can

change the content of a structure after a pointer to the structure has been

returned from the SM. Instead, the S-V operation Append accomplishes the

effect pictured in Figure 1.1-3 by creating a distinct new structure n,

whose stored content equals m's content with the new selector-pointer pair

added. Once a pointer to n is returned from the SM, it always points to a

structure identical to that in Figure 1.1-3(b), while the pointer to m

continues to point to a structure identical to the larger one in Figure

1.1-3(a).

The difference between the S-V and S-S systems with regard to the

goal of the thesis can be stated succinctly: Given two programs, one in

LBV and one in LBS, to do the same thing, the LBS program may have more

... .-

-24-

concurrency, but it also may be non-functional; the LBV program is neces-

sarily functional. I.e., LBV solves the problem of guaranteeing function-

ality, but at the cost of some potential concurrency; LBS recovers this

loss, but in so doing permits additional concurrency which may induce non-

functionality. This inspires the search (in Chapter 3) for a third

language-interpreter combination which eliminates from LBS just the

dangerous concurrency. For every LBV program P (which is necessarily

functional), there is a functional program P' in the new language which is

equivalent to P (i.e., which produces the same outputs given the same

inputs); furthermore, P' contains much (if not all) of the safe concurrency

missing from P. Formal definitions of a functional data-flow program with

data structures and of equivalence between two such programs are given at

the end of Chapter 2.

Chapter 3 commences with a study of the cause of non-functionality in

LBS programs on the standard interpreter: conflict. Certain pairs of con-

current operations (e.g., a Fetch and an Assign) conflict if it is possible

that equal pointer operands to executions of the operations are in the SM

at the same time. The easiest way to guarantee functionality is to

eliminate all possible conflicts. This results in a determinate program,

one in which each execution always has the same operands and always

produces the same results in all computations on a given program input.

A novel new two-pronged technique for insuring freedom from conflict

in an LBS is then developed. First, each program is rewritten to satisfy

the Determinacy Condition and the Read-Only Condition; the subset of all

LBS programs satisfying both is denoted LD. Secondly, the interpreter is

modified to delay return of the pointer result of a Select execution until

k _.. .

-25-

certain previously-returned pointers to the same structure have been input

by other executions. It is argued that every LD program, running on the

modified interpreter, is functional; the remainder of the thesis is devoted

largely to a rigorous proof of this claim. The final section of Chapter 3

presents an algorithm to translate any LBV program P into an LD program P',

and proves that if P' is functional, then it is equivalent to P.

Chapter 4 introduces a radically-different model of concurrent compu-

tation, the entry-execution model. As noted earlier, existing models

concentrate on the data and control flow of a program, virtually ignoring

the actual operations performed by most of the instructions. The new model

ignores data and control flow, focusing instead on defining operations and

the effects of their concurrent execution. A computation in the entry-

execution model consists of a sequence of entries, the operand and result

values of executions, arranged in an order in which they might be sent from

and returned to the Control Unit. An algorithm is presented for con-

structing, from any data-flow language L and interpreter I, the entry-

execution model EE(L,I); this serves a dual role: as a concrete example of

such a model, and as the first step in applying the formal results to LD

running on the modified interpreter M.

Chapter 5 develops a Structure-as-Storage (S-S) entry-execution model.

This demonstrates the principle (for which the entry-execution model is

particularly appropriate) of defining a set of operations by specifying

how the results of an execution depend on the preceding sequence of

executions' operands. This definition does not incorporate the concept of

a data structure; it is simply a description of the input/output behavior

expected of an SM which stores the structures and performs the operations

-26-

described earlier. Therefore, the Chapter also shows how to make the

connection between the abstract model and concrete data structures which

can be visualized.

Chapter 6 first defines determinacy in entry-execution terms. It then

presents seven Determinacy Axioms, and proves quite generally that if any

S-S model, of any concurrent computing system, satisfies these axioms, then

it is determinate. Six of the axioms are standard: their importance to

guaranteeing determinacy in systems without data structures (including

data flow) has long been appreciated. The seventh axiom embodies the

requirement for freedom from conflict between data-structuring operations.

Chapter 7 uses the result in Chapter 6 to prove that LD running on

the modified interpreter is functional. This is done in three steps:

(1) verifying that EE(LD,M) is an S-S model, (2) proving that EE(LDM)

satisfies the seven Determinacy Axioms, and (3) showing that the algorithm

by which EE(LD,M) was constructed could have produced a determinate model

only if every LD program running on M is functional. This leads to the

final conclusion that the translation in Chapter 3 from LBV to LD does

produce equivalent programs.

Chapter 8, the final chapter, summarizes the developments in the

thesis, evaluates how well these meet the goals, and provides suggestions

for further research.

-27-

1.3 Related Work

This section surveys past research on the topic of a Structure Memory

and the problem of guaranteeing functionality in the face of concurrent

structure operations. A characterization of existing models of concurrent

computation is provided as a prelude to the introduction of the entry-

execution model, in Section 4.1.

Gertz [18] studied the implementation of an SM using associative

memories. His Generalized Information Structure (GIS) was the same as that

defined here (Definition 2.2-1) (except that directed cycles are not

allowed). His choice of operations was unusual, however, because he was

primarily interested in storing data-flow-like programs in, and executing

them out of, the SM. The major results included:

1. the design of a system to execute, directly from the SM, GIS

representations of parallel programs, including multiple concurrent

activations of a single procedure, and

2. the development and analysis of stochastic models of modular,

hierarchical SM's constructed of associative memories.

He did not directly address the issue of guaranteeing functionality.

*Hawryszkiewycz [21] developed a scheme for coordinating concurrent

operations on a data base. He began by mapping relational data bases [7]

onto data structures like those being used here. He then gave a set of

semantic procedures, sequences of structure manipulations which implement

operations on relations. His primary correctness criterion, though a

little weaker, was not fundamentally different from the requirement of

functionality: The overlapped execution of two semantic procedures on the

structure representing a relation should result in the same transformation

-28-

as if one procedure (the first one invoked) had completed before the other

one had started. His solution to the coordination problem was very similar

to the one proposed herein (which was independently developed); it was,

however, less simple and general, for the following reasons:

1. His model of concurrent computation was based on present capabili-

ties: sequential processes synchronized by semaphores. This necess-

itated much attention to details (setting and testing locks, queuing

up suspended processes) which tended to obscure the innovative

mechanism. In the data-flow model, these effects are achieved much

more easily.

2. He had additional criteria for correct coordination, requiring a

mechanism more elaborate than would be necessary for simple

functionality.

3. His coordination method was specialized to a particular set of

semantic procedures; it is not clear how this would be generalized

to arbitrary concurrent computations.

The Structure-as-Storage operations were introduced by Dennis in [11].

This paper recognized the danger of non-functionality and suggested (as in

the present work) eliminating it through a combination of program restric-

tions and interpreter modifications. The program restrictions (which were

extended in [17]) were essentially the Determinacy and Read-Only Condi-

tions. The interpreter modification, however, was far more extensive than

that proposed here: The standard interpreter passes data and permission

to execute from one program instruction to another, in one direction; the

modification of [11] required that permission to execute also be passed

back in the other direction, at least between structure operations.

-29-

Maximal concurrency is provided at the expense of greatly-increased

execution time for structure operations by the interpreter modifications

devised by Campbell-Grant (131. His technique involved maintaining, for

every pointer variable v, a list of all structures reachable from that

pointed to by the current value of v. In general, every Select and Update

execution will require changing one of these lists, incurring enormous

overhead.

Both Rumbaugh [31] and Ackerman (11 offered sets of Structure-as-Value

operations which were more complex than those in LBV, due presumably to a

stronger desire for programming ease and implementation efficiency. Both

assumed that a structure's content consists of a fixed number of elements,

each of which can be either an atom or a pointer; selectors were limited

to consecutive integers. Select and Append operators could read atoms as

well as pointers (eliminating the need for the Fetch and Assign opera-

tions). Ackerman provided just the Select and Append; Rumbaugh constructed

more complex operations out of these. Both presented conceptual designs

for at least part of the SM hardware (the reference-counting mechanism,

explained in Section 8.2.1.1).

All of the Structure-as-Value systems (Rumbaugh's and Ackerman's, as

well as the simpler LBV) pay the same price for guaranteed functionality:

the loss of structure concurrency (as explained at the end of Section 2.2.2,

structure concurrency is the ability to read one sub-structure of a

structure while aiother one is being changed). Only the modified

Structure-as-Storage system presented io Chapter 3 will guarantee

functionality while still allowing structure concurrency.

-30-

Chapter 2

Structure Operations and Concurrency

This thesis studies concurrent computations with two fundamentally-

different sets of structure operations: the Structure-as-Value (S-V)

operations and the Structure-as-Storage (S-S) operations. The most

striking differences between a program P using S-V operators and an

apparently-equivalent proqram P' using S-S operators are that:

1. P' exhibits more concurrency than P, but

2. P' might not be equivalent to P, because it might not be functional.

This chapter defines the two sets of structure operations, within the

framework of a specific model of concurrent computation called data flow.

Section 2.1 describes the basic data-flow language without structures, L

Section 2.2 defines the languages LBV and LBS formed by augmenting LB with

the S-V and S-S operations respectively. Section 2.3 illustrates, through

the use of examples, the two differences between programs in LBV and LBS.

Finally, Section 2.4 makes precise the primary goal of the thesis: To

develop a language, based on LBS' in which, for every LV program P, there

is a program which is equivalent to P and maximally concurrent.

2.1 The Basic Data Flow Model

As explained in Chapter 1, a data-flow model consists of (1) a set of

programs, constructed according to certain syntactic rules, and (2) an

interpreter, which generates computations, as follows: A program together

with an input to it establishes an initial state of the interpreter; each

possible computation by that program on that input is an ensuing sequence

-31-

of interpreter states, generated according to a state-transition rule.

Section 2.1.1 below describes the syntax of a basic data-flow language L B.

A single interpreter gives meaning to the programs in L B9 L BV' and L BS;

this will be known here as the standard data-flow interpreter. That

portion of it pertinent to programs in LB, which is adapted from the model

first described in [131, is defined in Section 2.1.2.

2.1.1 Data-Flow Programs

A data-flow program is a graph. The vertices of this graph represent

instructions, and the arcs represent local data storage.

Definition 2.1-1 A program in any data-flow language is a connected

directed graph over a set of labelled vertices called actors. The unique

label of each actor Is drawn from an arbitrary but fixed set L. The

directed arcs terminating on an actor constitute the ordered set of input

arcs of that actor. The directed arcs emanating from an actor form the

unordered set of output arcs of that actor. No arc is an input arc of

more than one actor, and no arc is an output arc of more than one actor.

Those arcs which are not output arcs of any actor are the ordered set IN

of program iput arcs; correspondingly, the ordered set OUT of program

output arcs comprises all those arcs which are not input arcs of any actor.

If III contains m arcs and OUT contains n arcs, the program is an m~ data-

flow program.

-32-

Each arc in a program conveys one of two types of Information

data or control - and consequently is known either as a data arc or a

control arc (Figure 2.1-1). All data are drawn from an atomic value

domain V for the language; control values are either true or false.

A
An input arc to an actor d stores a value until d uses it. At that

time, the values on all of d's input arcs are removed, and used to compute

results which are placed on d's output arcs. Thus dts results are

available to just those other actors of which one of d's output arcs is

an input arc.

A basic data-flow language has a minimal complement of control and

data-processing actor types. From these can be constructed control

structures corresponding to sequencing, conditionals, and iteration.

Definition 2.1-2 A basic data-flow language is a data-flov language

in which all actors are restricted to be from one of the following

classes (illustrated in Figure 2.1-2):

1. atomic operator - An operator has an ordered set of r>O input arcs,

and two disjoint sets of output arcs: the number-1 group and the

number-2 group. Zither of these groups (but not both) may be empty.

data arc control arc

Data-Flow Program Arcs

Figure 2.1-1

1 r -33-. r

} number-2 nme-

number-I number-I

operators

T F T F

T-gate F-gate merge gate

and or not

Actor Types in a Basic Data-Flow Language

Figure 2.1-2

-34-

All arcs in each group store one result of an execution of the actor,

so that each execution produces one or two results. Usually, the

number-1 group will be data arcs, and the number-2 group will be

control arcs. This allows consistent treatment both of functions

(which produce data values) and of predicates (which produce control

values). These two output groups may be jointly defined, with a

true control output signaling that the data output is meaningful;

examples of the use of such hybrid operators will be seen later.

Each r-input operator in a program has associated with it a total

function:

Vr -+ Vx{true,false} or Vr _" VxV

Whenever the operator is executed, the values stored on its r-tuple

of input arcs are combined to form the input r-tuple to the function.

The values in the resulting output pair are then placed on the

number-I and number-2 output arcs, respectively.

2. T-gate and F-gate actors.

3. merge actors.

4. Boolean actors and, or, and not.

These last three types of actors control the flow of data through

a program. Their operation is described in greater detail in the

following subsection.

-35-

Figure 2.1-3 is a simple example of a program in a basic data-flow

language. It computes the value of the expression (a+b)*(c-d). The

four arcs in IN have been labelled a, b, c, and d to indicate the input

variable for which the arc represents storage. The 2-tuple of input arcs

of the non-conmutative subtraction operator has been indexed.

Informally, a computation by this program proceeds according to

the following rules: At any time after the values of inputs a and b are

stored on their respective input arcs, the addition operator "fires". That

is, it removes a pair of values from its input arcs, applies its associated

function (addition) to this pair, and places the result on its output

arc. The subtraction operator acts similarly. Since oone of the data

needed by a firing of one of these or rators is produced by the other,

the operators are concurrent. Finally, when the outputs of both the

addition and subtraction are available, the multiplication operator is

enabled to fire.

a b c d

1 2

A Simple Data-Flow Program

Figure 2.1-3

&MON S

-36-

A particular basic data-flow language Is distinguished solely by

its atomic value domain V and the functions available for operators.

Typical would be the elementary data types and operations of standard

programming languages: integer and floating-point arithmetic and string

manipulations. The only element presupposed in this thesis is a distinc-

tive value in V denoted by undef. A token with this value might be

output as a result of, e.g., attempting to divide by zero. It is

assumed that an otherwise arbitrary choice of V and of the data-processing

functions has been made; the resultant basic data-flow language will be

denoted LB. The next subsection defines that portion of the standard

interpreter's state and state-transition rule involved in interpreting

programs from L.

2.1.2 State Transitions

A computation by a program P from LBis a sequence of states of

the standard data-flow interpreter. The only non-empty component of

the standard interpreter state when interpreting P will be a configuration

for P. This simply tells what arcs hold what values. Each transition

from one state to the next in a sequence involves removing old values

from some arcs and placing new values on other arcs; the graph containing

these arcs, which Is P, remains constant.

Definition 2.1-3. A configuration of a data-flow program P from L is*.
B

1. P, plus

2. an association of a value from Vor the symbol null with each

data arc of P, plus

-37-

3. an association of a symbol from the set {true, false. null)

with each control arc of P. A

Figure 2.1-4 is an example of an ALGOL program and a ronfiguration

of the equivalent 2,1 data-flow program. (This program computes the

sum of the first N positive integers; its interpretation is explained

shortly.) A solid circle is drawn on each arc with which is associated

a non-null value, and a symbol denoting that value is written beside

the circle. These circles are called data tokens, true tokens, and

false tokens, according to the associated value. The figure depicts

an initial configuration for the program: all program input arcs have

tokens on them, as do certain control arcs.

0 N

HI F als 2 Ffalse

+0 1 integer sum,i;
sum "-= 0;

for i:-N step -I
until 1 do
sum :- sum+i;

Data Flow ALGOL

Two Equivalent Programs

Figure 2.1-4

-38-

Each of the state transitions occurring in interpreting a program P

from L. will involve re-distributing the tokens on the input and output

arcs of a single actor in the configuration of P; this is known as

"firing" the actor. The distributions just before and after a firing of

an actor depend on the type of the actor, as depicted in Figure 2.1-5.

The state-transition rule is given in the following two definitions.

Definition 2.1-4 The leftmost of each pair of token distributions shown

In Figure 2.1-5 is the enabled condition for a particular type of actor.

In general, an actor is enabled (to fire) just when all its input arcs

have tokens on them and all its output arcs are empty. The sole

exception is the merge gate. This requires a data token on only one

data input arc; which arc depends on the value of the control token.

Definition 2.1-5 That portion of the state-transition rule of the

standard data-flow interpreter which is pertinent to programs from

LB is:

Given a state in a computation sequence, each possible next state

in that sequence Is found by:

1. Select one enabled actor d in the configuration of the state.

2. If that actor Is one of the types allowed in L B, then the next

state is identical except for the input and output arcs of d.

These are re-configured as in the diagram paired with the

enabled condition in Figure 2.*1-5. The values of the newly-

created tokens are found as follow, depending on the type of d:

-39-

f f g 9

operators

true

false
T T TT

T-gate

F F F F

F-gate

true false

trF ueT T F T F

merge gate

Firing Rules for Data-Flow Actors

Figure 2.1-5

-40-

and/or not

Firing Rules for Data-Flow Actors

Figure 2.1-5 (cont'd)

a. operator - The function associated with d is applied to the

r-tuple of atomic values of the tokens removed from d's

ordered set of r input arcs. The resultant two values are

placed on all of d's number-I and number-2 output arcs.

b. T-gate and F-gate - The value of the output data token, if any,

is equal to the value of the input data token.

c. merge gate - The value of the output data token is equal to

the value of that input data token which is removed in the

firing. Any token on the other data input arc is undisturbed.

d. Boolean actors - These actors' outputs are defined in the

usual manner.

The gate actors - T-gates, F-gates, and merge gates - are used

together to control flow of data along alternate paths, thereby causing

the performance of alternate computations. Figure 2.1-6 depicts schema-

tically a conditional (if-then-else) construction. This is an m,n program;

the subprograms SI and S2 are m1 ,n and a2 ,n program respectively. The

decider D is an m3,1 program which produces a control output from m3 data

-41-

2 M

-42-

inputs. Of the m program inputs, a subset of size m1 are taken through

T-gates to become the inputs to Si, u2 of them are taken through F-gates

to become the inputs to S2, and m3 are taken directly to be inputs to D.

Each of the m program inputs must be an input to at least one of a T-gate,

F-gate, or D. There are n merge gates, each having as inputs one output

from each of S1 and S2 . The connections from the output of D to the

control inputs of all the gates have been omitted for clarity. Whenever

D outputs a true, S1 gets m1 inputs from among the m program inputs; the

m2 F-gate inputs simply disappear. The resulting n outputs of SI even-

tually appear on the T inputs of distinct merge gates. Since these gates

also have true inputs, the n program outputs are those produced by Sl'

Gates are also used to form the iteration construct, a specific

example of which is found in Figure 2.1-4. The interpretation of this

program can be explained as follows: In any configuration, just one arc

on each of the two directed cycles will have a token associated with it.

The value of the token in the left-hand cycle is the value of sum; the

value in the right-hand cycle is the value of i. In the initial config-

uration, both merge gates M 1 and M2 have false control inputs, conditioning

them to output the values found on their F inputs. These latter values

are the program inputs 0 and N respectively.

In the initial configuration, just M1 and M2 are enabled to fire.

Firing M1 enables P. On all but the Nth iteration, P outputs a true.

This enables the T-gates 1 and 1 2 to inject the current values of sum

and i into their respective loops; it also disables 13 from producing a

program output, and conditions H1 and M2 to receive tokens on their

1

-43-

T inputs. 02 is enabled as soon as 12 fires; the firing of 02 places the

next value of i on M2 's T input. 01 is enabled after both 11 and 12 have

fired; its firing places the sum of the current values of sum and i on

M I 's T input.

Thus each pair of firings of M1 and M2 causes the eventual re-enabling

of those operators, with new inputs equal respectively to the sum of their

last outputs, and to one less than M2's last output. After the N+lst pair

of firings, P's input is no longer greater than zero, so all gates get

false tokens. The T-gates I and 12 will then choke off the loops, so

that 2 and M do not get T inputs. I will output the most recent value

of sum, which is the program output. Finally, M1 and M2 are re-initialized

with false inputs. All internal (not program input or output arcs) are

now as in the initial configuration, so the program is ready to perform

the same computation on the next set of program inputs.

This completes specification of the basic data-flow language LB and

of that portion of the standard interpreter involved in interpreting it.

The next section now introduces data-flow languages containing two

alternative sets of structure operations.

2.2 Structure Operations

This section defines two languages: the data-flow language with

structures as storage, LBS' and the data-flow language with structures

as values, LB V. Each of these is an extension of LB. Computations for

both are generated by the single standard data-flow interpreter. The state

of this interpreter has two components: 1) the configuration, which has

-" - ' I | " ;* : "'

-44-

just been defined, and 2) the heap, which is composed of all data structures

which can be processed by subsequent computation. The heap is defined

first, followed by the definition of the structure operators in LBV and

LBS , which interact with the heap.

2.2.1 The Heap

The heap takes the form of a directed graph with labels on all

branches and atomic values stored at some nodes (Figure 2.2-1). The

labels on the branches, termed selectors, are drawn from a set Z of atomic

values (typically, Z consists of the integers and the character strings.)

No two branches emanating from the same node may be labelled with the same

selector. Formally:

Ito
267 IIIet

A Heap

Figure 2.2-1

-45-

Definition 2.2-1 N is an infinite set of abstract entities called nodes.

V is a subset of the atomic value domain V. The elements of V
p p

are pointers.

The set Z of selectors is a subset of V-Vp, on which has been imposed

an arbitrary but fixed total ordering <.

The heap component of the state of the standard data-flow interpreter

is an ordered triple

(N, 11, SM)

where:

N c N is a finite set of active nodes (the remaining nodes of N

are free)

n: V - N

is a one-to-one onto mapping from pointers to active nodes.

SM is a function which maps each active node into a content.

A content is a set containing:

a) one value from V-V or the symbol nil, and
p

b) zero or more ordered pairs from ZxN,

constrained so that no selector from Z occurs in more than

one pair of the content.

This definition of a heap represents a directed graph by the following

correspondences: Atomic value vEV is the value of active node m iff

vESM(m). There is a branch from node m to node n labelled with selector

s in the heap iff (s,n)ESM(m).

The notation "dom 11" will be used as an abbreviation for the domain

of mapping 1, i.e., the set {pEV 3nEN: (p,n)). I

-46-

*Nodes appear only in a heap, where they serve in two capacities: 1) as

* holders of atomic values, and 2) as endpoints for the branches which

indicate relations among structures in the heap. Pointers are atomic

values, which appear only as the values of tokens in a configuration. As

will be seen, each structure operator in either LBV or LBS has at least

one pointer input, and accesses the content of one node in the heap; that

node is associated with that pointer by the function H.

Selectors serve to distinguish among the several branches which

relate a node directly to other nodes, and they can be considered to name

those relations. The forms of selectors should mimic those actually used

in programming systems. These would include integers (used to relate

arrays to sub-arrays and to individual elements, for example) and

character strings (used to name more general .relations.)

The following defines some relationships within a heap:

Definition 2.2-2 For any active node m in a heap:

If there is a branch from m to n, then m is the superior node and

n the inferior node of that branch. The set of selectors in all ordered

pairs in SM(m) is the set O(m) of selectors off m. The successors of m

are just those nodes in ordered pairs in SM(m). For each ordered pair

(s,n) in SKM(m), n is the s-successor of m.

A path from node m to node n is a sequence of nodes nl, n2,..., nk

such that

i) ni m

ii) nk, n

iii) for i * 2,.,.,k, ni is a successor of ni.

-47-

Node n is reachable from node m if f there exists a path from m to n.

The node m, together with all and only those nodes reachable from m,

constitute the component ruoted at m.A

2.2.2 The Data-Flow Languages with Structures

This section introduces two sets of structure operators. These are

defined here as specific actors in a data-flow language. A structure

operator is fired just like an atomic operator from the basic language

LB: tokens are removed from all its input arcs and tokens are placed on

all its output arcs. However. while the output of an atomic operator is

a fixed function of just its inputs, the output of a structure operator

may depend on the current heap as well. Furthermore, the firing of certain

structure operators will cause changes in the heap.

Adding the two sets of structure operators to L Bresults in the

lanuags LBVthebasc~ataflo lnguge it stuctre asvaleB

anguge L, the basic data-flow language with structures as aues,

an BS tebscdt-lwlnagwihsrcue assrg:

Definition 2.2-3 L BVis a data-flow language in which all actors are

restricted to be from one of the four classes of actors in L (Definition
B

2.1-2), or one of the following:

5a, structure operators - Fetch, Const, First, Next, Select, Append,

Remove.

LSis a data-flow language in which all actors are restrtcted to be

from one of the four classes of actors in LB, or one of the following:

5b. structure operators -Fetch, Assign, First, Next, Select, Copy,j Update, Delete.A

-48-

The graphical representations of the structure operators are depicted in

Figure 2.2-2. Note that the Fetch, First, Next, and Select operations are

common to both languages. (The sets of structure operations in LB and

LSare extensions of those introduced by Dennis in (121 and [11] respec-

tively. His assumed structures in which a node's content could not

concntin both an atomic value and branches, and he had no operations

equivalent to First and Next.)

Computations (state sequences) are generated from programs in both

LBV and LBS by the single standard data-flow interpreter. A portion of

the state-transition rule has already been given. Completing it requires

specifying both the effect of firing each kind of structure operation and

the rules for typ compatibility: Pointers are a type of atomic value

fundamentally different from noa-pointers. The only non-trivial actors

which can accept pointers as meaningful inputs are the structure operators;

it is not possible, e.g., to perform arithmetic on pointers. The few

"trivial" actors, including gates and others to be introduced, have some

inputs from which they do not attempt to extract any meaning; those

inputs, therefore, may be allowed to be of either pointer or non-pointer

type. These actors will be known as the pseudo-identity actors:

Definition 2.2-4 A pseudo-identity (pI) actor is any actor which at every

firing necessarily outputs tokens with a value equal to that of the token

removed from one of its input arcs at that firing. Any input arc of a

pI actor whose value could be copied to the actor's output arcs is a

transmitted-input arc (i.e., the merge gate is the only pI actor with

more than one transmitted-input arc).

-49-

1 11

Fetch First 2 Next

12 2 2
Select 2 ssig Update

3

22
Delete copy 2 Const

2
Append 2 Remove

3

The Structure operators

Figure 2.2-2

-50-

The standard state-transition rule is completed below by codifying

the type-compatibility constraints and describing the effect of firing

each structure operator (an informal discussion of these operators then

follows).

Definition 2.2-5 The state-transition rule of the standard interpreter

consists of the portion found in Definition 2.1-5, plus the following:

3. If either

a. the enabled actor d is not a structure operator or a pI actor,

and there is some input arc of d with a token whose value is a

pointer, or

b. d is a structure operator and the values of the tokens on d's

input arcs are not as specified in Table 2.2-1 for the type of d,

then the next state is a fault state. (The handling of faults is

beyond the scope of this thesis.)

4. Otherwise, the next state is related to the current one as follows:

a. The configuration component is identical except for the input

and output arcs of d. The input arcs all have been emptied, and

the output arcs all have had tokens placed on them. The value of

the tokens placed on the number-2 output arcs is found by eval-

uating the predicate listed for d in Table 2.2-1. (The Copy

operator is unique in that there is no meaningful predicate to

associate with it. Hence, both of its groups of output arcs are

data arcs, which receive identical output values.) The value of

the data output tokens depends on d as follows:

Output Values Heap Alterations
Structure L B-I Input Values Number-I Nbr- Ne

2
Nw

Operator B-br2 e e

(Data) (Control) Node Content

Fetch S,V 1. P(V Pv v~nil No SM'(m) - SN(m)

First S.V 1. PEV. where s(O(mT a-nd O-dm)T*- No SMI(m) - SM
4
(m)

Next S,V 1. p(V s' -where s'(O(m), incs'. 3sEO(m): ace' No- SN 7m)- SM SW

2. s(Z and As"EO(m): s~cs"<s'

Select S,V 1. pEV pr, where (s,fl1(r))ESM(-) S(O(M). No SMN(M) - SM(m)

2. sEZ

Assign S 1. PfV 0 v~nil No SM'(m) - (v}UB

2. v'E (V-Vp) Iftnil}

UpaeO1 $ s(O(m) No SM'(m) -

2. s v}1UB Uf(sF1(r))}

3. r(V

Delete S 1. pEV 0 SEO(m) No SN'(m) - {v1UB

2. sEZ

Copy S 1. P~v q. where Tidomflr q Yes SM'(n) - SM~n)

Corist V 1. pEV p v~nil Yes SM'(n) - jv' UB

2. v*((V-V)U(nil}
P ________________________ ___________

Append V 1. pEVp sEO(m) Yes SM'(n)=

2. s(Z {v}UB Uf(sjr(r)) I
3. r(V

Remove V I * pfV psEOWm Yes SHr(-n) - {v}UB-

2. sf1

Legend -Notes-

(N, fl, SN) is the current heap 1. S -operator is in L BS

(N', P'', SN') is the new heap V - operator is in L BV

m - fl(p) 2. No - N' - N, nl' - nl, (vm'*m)(sm'(m') - sN(m,))

v is the unique value from V-V pU~nill Yes - N' - NU1n} where nfN-N,

which is In 514(m) Vrfdom fl, Wl(r) = f(r), fl'(q) -n

OWm - a 3n: (s,n)ESM(m)) Vm*(N, SM'(m') =SM(m')

B - (s',n)l (s',n)ESM(m)}

B- ((s',n)l (s',n)ESM(M) A S'i*s}

Specifications of the Structure Operations

Table 2.2-1

...... - ...

-52-

Fetch, First, Next, Select - If the control output value is

false, then the data output tokens have the value undef. Other-

wise, they depend on the current heap as indicated in the Table.

Assign, Update, Delete - The data output is identically zero.

This data output token can be used for synchronization, as will

be seen in Chapter 3.

Copy, Const, Append, Remove - The data outputs are equal to q, an

arbitrary pointer not in the domain of the current El.

b. The new heap component depends on d as indicated in Table 2.2-1

under Heap Alterations. These dependencies can be categorized:

Fetch, First, Next, Select - The new heap is identical to the

old one.

Assign, Update, Delete - The only difference is a modification

in the content of the node m = f(p), which was active in the

current heap.

Copy, Const, Append, Remove - An arbitrary free node n is

activated: The set N of active nodes in the heap is augmented

by n, the domain of the function r7 is augmented by the pointer

q which is the data output, and fl(q) = n. The content of n is

a close derivative of m's content. A
Below is an informal discussion of the usefulness of this particular

selection of structure operators; following that is a formal characteri-

zation of the state of the interpreter during a computation sequence.

The decomposition operators - Fetch, First, Next, and Select - are

common to both LBV and L BS. Fetch, given a pointer p, outputs the value

... ... -.,,• .. B V. B S-. : = Il

-53-

of the node m = P(p). The First and Next operators allow enumeration of

the set O(m) of selectors labelling the branches emanating from m. These

operators sort O(m) according to the assumed total ordering < on the entire

set Z of selectors: First outputs the least selector in O(m), and Next

inputs one selector and outputs the next-greater selector in O(m).

Enumeration is accomplished by applying First once, and then Next repeti-

tively, until a false control output obtains.

The Select operator inputs a pointer p and a selector s and outputs

a pointer to the s-successor of m = H(p) (if one exists). The set of

successors of m may be discovered by applying Select to each selector in

the enumeration of O(m). Recursive application of this procedure leads to

the discovery of all nodes reachable from m, and of all branches between

any two such nodes. Thus complete decomposition of any given component is

straightforward in both L and L
BV BS*

The remaining operators in each language are its construction

operators. These are capable of constructing in the heap any arbitrary

component. The operators in L have been chosen in the expectation that
BV

most components constructed will be very similar to existing ones. There-

fore, each operator activates a new node whose content differs minimally

from an existing node's content: Const activates a node whose content has

a given value, but is otherwise identical to the content of a given node.

Append activates a node whose content is distinguished from a given node's

only by the presence of a given ordered pair (and the consequent absence of

any other pair with the same selector). Remov6 is provided to activate

a node whose content is distinguished by the absence of any pair with a

given selector.

' 1 nl lmlm lllm ll mlm ~ lu -l~ li ,M

-54-

The structure operations chosen for -BV have intentionally been kept

simple, compared with those offered in [11 and [31). which are oriented

more toward efficiency in both programming and implementation. The

advantages of simple operations are that (1) they are formally more tract-

able, and (2) they constitute a more general basis for composing various

sets of complex operations.

The structure operations in L also exhibit these advantages to
BS

substantially the same degree. The decomposition operations are identical

to those in LBV. For every construction operator in L BV there is a two-

operator combination in LBS which has the same effect. Figure 2.2-3

illustrates this for the Const operator: The Copy operator activates a

/ [~copy \-- -. I
- - IS

5-II Copy
I!

Assign

iquivalence of LBS to LBV

Figure 2.2-3

i

-55-

new node n with a content identical to that of its input node m. The

Assign operator modifies the content of its input node n, giving it a new

value v'. Thus the heap is altered by this LBS combination in exactly

the same way as by the single LBV operator Const.

The fundamental difference between LBV and LBS is in this:

Is the content of a node altered before or after the pointer

to that node appears as the value of any tokens?

In LBV, the node is always altered before; in LBS, it is always altered

after. This means that in an implementation of LBS' the physical process

of constructing a new component can be partially overlapped in time with

the process of decomposing that same component. This phenomenon, which

may be called "structure concurrency", cannot occur in LBV. As illustrated

by the example programs in the next section, structure concurrency has

two vital consequences:

1. An LBS program has the potential for more concurrency, hence a

shorter minimum execution time, than an equivalent LBV program.

2. The LBS program potentially produces the wrong result.

This section concludes with a study of properties of the interpreter state

which are preserved by the state-transition rule.

2.2.3 Formal Semantics

An interpreter generates a set of computations from a program P and

an input to P in the following manner: P plus its input establish an

initial state for the interpreter according to some convention. Each

computation is a sequence of interpreter states generated from the initial

state by repeated applications of a state-transition rule. The state-

~. - ,.I

-56-

transition rule for the standard interpreter has already been fully

specified. A convention by which a program together with an input to it

establish an initial state is provided below. This is followed by a

demonstration that the state-transition rule, particularly the definitions

of the structure operations, is consistent in the following sense: In each

state in a computation sequence, the second component of the state truly

is a heap, and each pointer in the configuration points to a node in the

heap component.

The initial state in any computation sequence in the standard

interpreter will satisfy the following specification:

Definition 2.2-6 An initial state of the standard data-flow interpreter

for any program P is a pair (ru), where

r is a configuration of P, and

U - (N, n, SM) is a heap,

satisfying

1. there are in r data tokens on all program input arcs of P and on

no other data arcs, and

2. every pointer which is the value of one of these tokens is in the

domain of IT.

An initial state for P establishes values for all of the program inputs

to P by the following correspondence: If an input arc holds a token

with a non-pointer value, then the corresponding program input is that

value. If an arc holds a token with a pointer value p, then the corres-

pondinig program input is the data structure which is the entire component

rooted at fl(p) .

-57-

Theorem 2.2-1 Let S be any initial standard interpreter state for an L
0O BS

program, and let S - (r,(N,rn,sM)) be any final state in a sequence derived

from SO by repeated applications of the state-transition rule. Then:

A: For each nEN, and for any sEZ, (sm)ESM(n) - m(N.

B: There is a token with value pEV on an arc in r only if pfdom 11.
P

C: fH is one-to-one onto N.

Proof: By induction on the length of the state sequence.

Basis: The length of the sequence is one; i.e., S - SO , the initial state.

(1) (N,rI,SM) is a heap and B Def. 2.2-6

(2) A and C (1)+Def. 2.2-1

Induction step: Assume that A, 3, and C are true for the final state in

any sequence of length n > 0, and consider a sequence of length n+l.

Let the final state in that latter sequence be 5'.

(3) S' is derived by applying the state-transition rule once to a

state S, which is the final state in a sequence of length n

Let S - (r,(N,f,SM)) and S' - (r',(N',',SM1')). Let d be the enabled

actor chosen to fire in the transition from S to S'. There are four

cases to consider, depending on the type of actor d is.

Case I: d is not a Select, Update, or Copy.

(4) n' - i and N' - N, so W' is onto N' (3)+Def. 2.2-5+ind. hyp. C

(5) For any nEN', let (s,m) be any ordered pair in SM'(n). Then EN

and (s,m)ESM(n) (4)+Def. 2.2-5

(6) mEN (5)+(3)+ind. hyp. A

(7) mEN' (6)+(4)

(8) There is a token with pointer value p on an arc in r' there is

-58-

a token with value p on an arc in r Def. 2.2-5

(9) - p~dom H - pEdom H' (3)+(4)+ind. hyp. B

Case II: d is a Select

(10) ' - n, N' - N, and SM' - SM Def. 2.2-5

(11) For any nEN', (s,u) is any pair in SM'(n) - nEN and (s,m)ESM(n) (10)

(12) - mEN - mEN' (10)+(3)+ind. hyp. A

(13) There is a token with pointer value p on an arc in r' z there is

a token with value p in r or that token was placed on a data

output arc of d in the transition Def. 2.2-5

(14) There is a token with value p in r - pEdom H' (10)+(3)+ind. hyp. B

(15) Let q and s be the values of the tokens removed from d's pointer

and selector input arcs. Then a token of value p was placed on

d's output arcs - there is a pair (s,m)*in SM(O(q)) Def. 2.2-5

(16) - mEN (3)+ind. hyp. A

(17) - pEdom n - pEdom TI' (10)+(3)+ind. hyp. C

(18) 1' is onto N' (l0)+(3)+ind. hyp. C

Case III: d is an Update

(19) 1 - n and N' - N, so n is onto N' (3)+Def. 2.2-5+ind. hyp. C

(20) For any nEN', (s,m)ESM'(n) a(s,m)ESM(n) or m - n(r) where pointer

r is the value of a token on an input arc of d in r Def. 2.2-5

(21) (s,m)ESM(n) - mEN - mEN1' (19)+(3)+ind. hyp. A

(22) r is the value of a token on an arc in r - rEdom n (3)+ind. hyp.

(23) -m - n(r) is in N - N' (20)+(19)+(3)+ind. hyp. C

(24) There is a token with pointer value p on an arc in r' - there is

a token with value p on an arc in r Def. 2.2-5

(25) - p~dom n - pEdom n' (19)+.(3)+ind. hyp. B

-59-

Case IV: d is a Copy

(26) 11' = HU((p,n)} and N' = NU{n}, where (p,n)(IT and nfN, and p is

placed on an output arc of d in the transition Def. 2.2-5

(27) H' is onto N' (26)+(3)+ind. hyp. C

(28) For all n'#n in N', (s,m)ESM'(n') - (s,m)ESM(n') (26)+Def. 2.2-5

(29) - mEN - mEN' (26)+(3)+ind. hyp. A

(30) Let r be the pointer value of the token removed from d's input

arc in the transition. Then SM'(n) = SM(Tf(r)) Def. 2.2-5

(31) (s,m)ESM'(n) = (s,m)ESM(l(r)) - mEn m(N' (30)+(26)+(3)+ind. hyp. A

(32) There is a token with value q on an arc in r' - there is a token

with value q on an arc in r or q - p (26)+Def. 2.2-5

(33) There is a token with pointer value q on an arc in r - qEdom H -

qEdom 11' and q#p (26)+(3)+ind. hyp. B

(34) q - p - q~dom n' (26)

(35) B for r' (32)+(33)+(34)

A
2.3 Computations Over Structures

This section first presents two simple data-flow programs with

structures: AlterV, written in LV, and AlterS, written in L BS. These

will be used to illustrate how the standard data-flow interpreter gives

meaning to programs with structures. Additionally, AlterS is the

simplest program in which the phenomenon of structure concurrency is

observed to cause incorrect results. The other alleged consequence of

structure concurrency, reduced execution time, is not evident in programs

as small as these; therefore, this effect is studied in a pair of larger

programs.

S

-'-4

-60-

2.3.1 A Simple LBV Program

Figure 2.3-1 shows the LBV program AlterV. This program has two

distinct inputs. The X input must be a pointer to a node in the heap,

and the Y input must be a non-pointer value. The only non-structure

operator in this program is the constant generator G. This operator

ignores the value of its one input, which here is a program input. Its

output arcs are the selector input arcs of SI, S2, and A; these have not

been connected, to avoid confusion. Each time G fires, it places tokens

with the constant selector value 'next' on all these arcs.

The intent of AlterV can be understood informally as follows: The

first part, consisting of operators S1, C, and A, constructs a component

identical to that pointed to by the X input, except for this: The 'next'-

successor of the root node has a value equal to the Y input. The program

output Q is a pointer to the root of this new component. The second part

of the program, consisting of S2 and F, fetches the value of the 'next'-

successor of the root node of the newly-created component. Therefore,

the program output R should equal the program input Y.

Figure 2.3-2 depicts an initial state S for the program AlterV. The

configuration is shown on the left, the heap on the right. (The labels

mI and m2 on the nodes in the heap are for reference purposes only.) The

program input Y is 3. The program input X is a pointer p to node mi in

the heap; this is indicated by the arrows to m1 from the tokens on the

program input arcs.

If the interpreter is started in state S, .,3ecessive applications of

the state-transition rule will take the interpreter through a sequence of

-61-

y1 X

-62-

Inext

G

An Initial State S for AlterV

Figure 2.3-2

states. Figure 2.3-3 shows several states in this sequence. The only

actor enabled in the initial state is the constant generator G. Firing

this places the selector 'next' on all selector input arcs, resulting in

a state in which only Select S1 is enabled. Firing S1 results in the

state shown in Figure 2.3-3(a). S1'S inputs were a pointer to a and the

selector 'next'; its output is a pointer to m2' the 'next'-successor of

m V Part (b) shows the result of firing Const operator C. A new node

n2 is activated with a value of 3. The Append A is the only operator

enabled in this state; the state after it fires is in part (c). A second

-63-

03 S1 (4)
mextil'xt

"'2 2

next'~

"2
2

Inex
I n xt'1

2n

a)
()

A StS eunefrAtr

Fiur 2.3-

-64-

new node n I has been activated. This node has the same content as i

except that its 'next'-successor is n 2 instead of m 2. I.e., the node

nis the root of a new component which differs from the program input

only in the value of the 'next '-successor of Its root. A pointer to this

new component is now on the program output arc Q. Firing the remaining

two operators results in the final state S f (Figure 2.3-3(d)). The value

3 has been fetched from n 29 and a token with that value appears on the

program output arc R.

This example illustrates the formal derivation of one possible

outcome for the Liven input. The final state In Figure 2.3-3(d) estab-

lishes values for the program outputs in a manner analogous to the estab-

lishment of program inputs by an initial state. A final state can be

found only by using the state-transition rul'e to generate a sequence of

states starting in the initial state. Determining all possible outcomes

for a given input is ultimately a matter of generating all possible state

sequences starting in all possible initial states which establish that

input.

Distinguishing one of these state sequences from another by comparing

graphical representations, like those in Figure 2.3-3, is unworkable. A

convenient abbreviation for a state sequence is a firing sequence. This

is basically the sequence of the labels of the actors fired at each

state transition. An entire state sequence can be uniquely re-constructed

from its initial state and its firing sequence, as in the following:

Definition 2.3-1 Let S be any state for a data-flow program P.

Let d be the label of any actor in P. Then a firing c. of the actor

-65-

labelled d (or a firing of d, for short) is defined by

d if the actor is not a Copy, Const, Append, or Remove

((d,(p,n)) otherwise, where p is any pointer and n is any node

A firing sequence starting Ln S, and the state after firing sequence

R, S'2, are jointly defined by the following recursive rules:

(1)), the empty sequence, is a firing sequence starting in S.

S'X = S.

(2) Let2 (l, 2,...,n-l be a firing sequence starting in S, and let

d be the label of any actor enabled in S.2. Then

2n l,(2,...,n-l,9n, where Dn is a firing of d, is a firing

sequence starting in S.

S-99n is the state obtained by applying the state-transition rule

to S-2 with d as the enabled actor selected to fire. If d is a Copy,

Const, Append, or Remove, then it is the ordered pair (p,n) which

is added to H.

(3) All firing sequences starting in S are defined by (1) and (2) above.

Any firing sequence 2 is halted iff no actor is enabled in S'2. A
The only freedom of choice in the application of the state-transition

rule is in the selection of:

1. which enabled actor is fired,

and if a Copy, Const, Append, or Remove is chosen,

2. what pointer-node pair is added to the function n.

Each possible choice can be expressed as a unique firing. Any state plus

a firing of an actor enabled in that state determines a unique next state.

Thus a sequence of firings starting in an initial state uniquely

-66-

determines a sequence of states, as in the above definition.

An initial state for a program P establishes some set of program

input values for P. The data-flow interpreter associates with each such

initial state a set of possible state/firing sequences. The final state

entailed by each such sequence establishes a set of program output values

for P, at least if P is well-behaved [121:

Definition 2.3-2 A data-flow program program P is well-behaved iff the

following is true o! every initial state S for P: Let 2 be any halted

firing sequence starting in S and let (r,U) be the state S'Q. Then in r:

1. Every program input arc of P has no tokens on it.

2. Every program output arc of P has a token on it.

3. Every other arc is configured exactly as in S. A
Thus the interpreter associates one or more sets of output values with

each possible set of input values for a program. AlterV is a program

for which each set of inputs has exactly one set of outputs associated

with it. For the program AlterS, presented next, a given set of inputs

may have many different sets of outputs associated with it.

2.3.2 The LBS Program AlterS

AlterS (Figure 2.3-4) illustrates the hazards of structure concur-

rency. It is derived from AlterV by performing the substitution shown in

Figure 2.2-3 for the Const, anda similar one for the Append. It is argued

at the end of Section 2.2 that the substituted combinations change the

heap in the same way as the LBV operators which they replace. It is

-67-

y

3

In1ext '

C2

m
2

The L Program Alters
BS

Figure 2°3-4

I

therefore rs'anoanab Ie to expect that AltorS anti Alt erV will aliways vievid

"eoqual" roeil tN when Appli ed to the lanie inpttN. ("Equal ity" Is t ined

here tin an ittit (vt menme; A fornial doie nIt ion In givent In Soct ion 2.4.)

tlnfortinntoly. thatt Is not the came. D iferen~~t firing mc-titenev st art ing

tin the saUw it 141 state for AltvrS may yield unequal final mtntes. tam

io demonstratetd next.

Tilt, in itini IAt te ,.* IN t hat Nhown inI Figure, 201-4. Tho program

Iiptt are otiml to the tnptilt of Alt twV In the Inititi Istate of Ft gurte

2. 1-2.* Consaider fi rst the fi(ring aequeince, Q

Figtire 2.3i-5 shows tilt Inuterpreter~ tfta Afteor aelocted pref!e t itN0

In -,-G,SPC',~ (part (n) of the Fltirv) , the ouitput are of 8 1 ha1 a

pointer to node M2. * The otpuit nren of C Ihave pointers to tit. which Is

1 cOPy (if m,1 (I f. Im a newt v-net wa ted node hav ing tilt, nme cont ett lit

i.) In :~, C*C I(part (b)), A copYv i 2 Ilaa beeni made oif node it".,

And the 'next' -aucco0MSr tit it halt been changed by the Update to be it,.

In ,-*0..,,CPC~.., ,I1.A (part (e)), the vaIlue of 11 lhae been chianged by

the Asotgn to be' 3. 11T program out pt- art, Q baa A pointeor to tilt* whichl

iN thlt root oif A component differing f rom thet program Iiput X only tIn

tilt valute of the root's 'next -swcceaaor * Firing 1;, andi F (etechea th~e

va tue 1 from n,, reitn Ni h ia tt hown tin part (d).

It I.a apparent that the ottai of AlterS tin Are oqual to the

tnniquo out put N producved by Altt-V (or the sameO Input"N. Consaider however

the firing voequenco Q, M vSCC.S2,,2lI1,A. F. In thlt state Q*CS l9C14.C

(Figure 2.1-6), S 2 tN enabled with a pointer to n IAll inpatit . I S) tit

fired in this state, at pointer to nodo m 2 wilt be plaed on F's inputt Are.

-tAll selector inputs anti branch label@ are 'next'.

-69-

413 41

M2 2

2

1

1 12

Fiur 2.3-5

-70-

22

A State in an Alternative Sequence for AlterS

Figure 2.3-6

Then when F eventually fires, a token with value 2 will be placed on the

program output arc R. So the R output arc has a token of value 2 in S 2

and a token of value 3 in S-21 . There are two firing sequences, starting

in the same initial state for AlterS, which lead to final states with

unequal program outputs. Any program for which this may be true is

non-functional (this property is formally defined in Section 2.4). An

LBS program may be non-functional, but all LBV programs are functional.

S.22 differs from S,21 because of the concurrent construction and

decomposition of the new component rooted at n1. In S-G,S 1 ,ClC 2

(Figure 2.3-6), n1 has been activated and there are pointers to it

available. During subsequent computation, a new component rooted at

-71-

n will be constructed. There is in this state a "race" between the

construction operator combination U-A and the decomposition combination

S -F. If the decomposition combination loses this race, then it decom-

poses the new component, as intended. If it wins, then it decomposes

whatever component was originally rooted at n1 , which happens to result in

outputting 2, the value of m 2.

Thus structure concurrency may induce non-functional program behavior

(under conditions made clear in Section 3.1.1). A potentially-compensating

benefit of this concurrency is demonstrated in the next sub-section.

2.3.3 Analysis of Execution Time

Figure 2.3-7 shows two programs: AlterV2, written in LBV, and AlterS2,

written in L BS. These programs are similar to AlterV and AlterS. The

only difference is in the level at which the output component differs from

the input: Each of these programs first constructs a component identical

to its X input except for the value of the 'next'-successor of the 'next'-

successor of the root. It then fetches this value from the newly-

constructed component. (The constant-selector generator has been omitted

for simplicity.)

The purpose here is to estimate the relative total elapsed times

required to execute AlterV2 and AlterS2. The analysis is based on the

following simplifying assumptions:

Assumption 2.3-1 The time required to execute an operation is one of

three constant durations, depending on the type of the operation:

a. S is the time required for the Copy, Const, and Append operations.

Each of these entails the following sub-operations:

-72-

Fiur 2.-

Select
C

A,-

-73-

Figure2.3-7 ccopyd

-74-

i. Find where the content of the input node is stored in the

Structure Memory (SM).

ii. Find an unused pointer value and an empty location in the SM

for a new node's content.

iii. Read the value and every ordered pair in the old content,

copying it (with possibly one change) into the empty location.

b. P is the time required to execute a Select or Update. Each of these

involves the following steps:

i. Find the content of the input node.

ii. Search through the ordered pairs in that content until one

with the given selector is found.

iii. Either return this (Select) or overwrite it (Update).

c. V is the time required for the Fetch and Assign operations. These

entail the following sub-operations:

i. Find the content of the input node.

ii. Read the value in that content, and return it (Fetch) or

overwrite it (Assign).

It is clear that P E S and V f< S, and it is likely that V < P.

Assumption 2.3-2 Each operator's execution starts as soon as all of the

other executions which must precede it have finished. This includes those

which supply its inputs, as well as those which must precede it for cor-

rectness; i.e., for AlterS2 to produce the same result as AlterV2, U 's

execution must finish before S3 's starts. Thus, the total execution time

for a program equals the maximum sum of execution times for all sequences

of operators of the following form: For each operator d in the sequence

-75-

except the last, d must finish executing before the next operator in the

sequence can start. A
Under these two assumptions, the total execution times for the two

programs are reckoned as follows:

AlterV2 - There is only one such sequence of operators. The sum

of execution times along it is

3S+4P+V

AlterS2 - There are two maximum-execution-time sequences:

S -S 2-C 3-U 2-S 4-F and S 1-C 2-U -S 3-S 4-F

The total execution time along either is

S+4P+V

Thus the execution time for AlterS2 is 2S less than the time for AlterV2.

Since this latter time is less than 8S, AlterS2 exhibits a reduction in

execution time of at least 25%.

Thus the structure concurrency permitted in LBS can result in

significantly faster programs. Unfortunately, it can also result in

non-functional programs, which are totally unacceptable in most computer

applications. This inspires a search for a compromise, for a language in

which it is easy to write programs which are functional but still exhibit

as much of this concurrency as possible. LBV, a rich language for the

expression of functional algorithms over structured data, will be used as

a paradigmatic source of functional programs.

Therefore, the primary goal of the thesis can be stated as:

L-i '

-76-

Develop a language LD, with interpreter, having the property

that any well-behaved L BV program can be translated into an

equivalent LD program vhich has maximal structure concurrency

(the LB program has none).

This involves four tasks:

1. Formally define what it means for certain programs in other

languages to be equivalent to a given L BV program (this is done

in Section 2.4).

2. Develop L D and its interpreter, as well as a translation to it

from L BV(Chapter 3).

3. Prove that the translation produces an equivalent program

(Chapters 4, 5, 6, and 7).

4. Show that an LDprogram on its interpreter is maximally concurrent .

This is argued, though not proven, in Chapter 8.

2.4 Equivalence and Functionality

This section provides a formal definition of the equivalence of two

programs from different languages. This definition is not comprehensive,

but will cover the case of programs translated from L BV to LD. Since

every program in LVis functional, the equivalent LD program must also

be functional. Therefore, a formal definition of functionality is given

first.

-77-

2.4.1 Functionality

An intuitive notion of a functional well-behaved program has been

presented earlier: one which, given a set of input values, always

necessarily produces the same set of output values. As has been pointed

out, an initial (final) state establishes a set of program input (output)

values. This suggests a more precise definition of functionality: Let

S1 and S2 be any two initial states which establish the same set of

input values. Then all halted firing sequences starting in S 1 and S 2

lead to final states which establish the same set of output values.

Two initial states for a program which establish the same program

inputs can be characterized thusly: An arc has a token on it in either

state iff it is a program input arc (because they are initial states);

if an arc has tokens in the two states, then those tokens' values

either are the same non-pointer value or are pointers to equal

structures. With the substitution of "output" for "input", this same

statement serves to characterize final states which establish the same

set of output values. Both of these notions can be accomodated as

special cases of the single more general concept of "equal states",

developed next.

Two states of a program are equal iff, for each arc b in the program,

the condition of b in one state matches that in the other; i.e., either

1. b has no token in either state,

or 2. b has tokens of identical non-pointer values in the two states,

or 3. b has tokens whose values are pointers to equal components in

the two states.

,

-78-

"Pointers to equal components in two states" need not be identical

pointers, nor need they point to identical nodes. For example, let

S1 - (r1, (N1, rlv SM1)) be an initial state, and let

S2 = (r1, (N1, F2 , SM1)) be a state identical to that except that some

pointer p1 in dom I1 is replaced in H 2 by P2 not in dom H1 . Then

certainly the component rooted at H2 (p 2) in S 2 is equal to the component

rooted at l1(P1l) in S1 . Therefore, the program has the same inputs in

S2 as in S

Since nodes are only place-holders, uniformly substituting one for

another in a heap does not change the data structure represented. For

example, consider the initial state for AlterV depicted in Figure 2.3-2.

The heap in that state is

U1 = (NI , n1 , SMI)

where N1 - {m1, m2}

n1 = {(p1,m1
) ' (p2'm 2)} where p, is the value of the token on the

X program input arc

SM1(m1) - {1, ('next',m 2)}

sM(m 2) - 12)

Replacing node m2 with a different node m30mI uniformly throughout U1

yields

U2 = (N2, H2 , SM2)

where N2 ' I'l, m 3)

17- {(P,ml), (P2,m3)}

SM2(m 1) (1, ('next',m 3))

sM2(m - 42)

2

-79-

The component of U2 rooted at m1 clearly represents the same structure as

the component of U1 rooted at mi. Whenever two components are identical

to within pointers and nodes, they are equal:

Definition 2.4-1 Let UI i (N1 , U1 , SM1) and U2 f (N2, n2, SM2) be two

heaps, and let I be any one-to-one mapping from N1 to N2 . The component

of U2 rooted at any m2 EN2 equals under I the component of U1 rooted at

m1 EN1 , written

U2 .m2 - Ul.m 1

iff

1. m2 - I(m 1), and

2. for each nEN1 such that n = mI or n is reachable from m1 in U1,

SM2(I(n)) = I(SM 1 (n))

where for any content c = {v, (s,,n1),...,(sjnj)1, l(c) denotes the

content {v, (SlAI(n l)) , . . . , (s j , I (n))

Now the definitions of matching conditions of arcs and of equal states

follow directly:

Definition 2.4-2 Let S1 = (r1,U1) and S2 - (r2,U2) be two standard

interpreter states, where U1 = (NJ, Ull, SM1) and U2 = (N2, T29 SM2). Let

b and b2 each be an arc from the program of which r and r2 9 respectively,

is a configuration. Then for any one-to-one mapping I: N1 -+ N2 , the

condition of b2 in S2 matches under I the condition of b1 in S 1 , written

atch((b 2 S 2), I, (b 1 ,s 1))

iff one of the following is true:

1. There is no token on b1 in r1 and none on b2 in r2.

I~~ 2______

-80-

2. There are tokens with the same non-pointer values on b1 in r1 and

on b 2 in r 2.

3. There is a token with value piEV on bi in ri, i1-,2, and

U 2.I2 (P2) U1 .J1(pl)

Definition 2.4-3 Let S1 and S 2 be two standard interpreter states for the

same data-flow program P. Then S2 equals S 1 iff there is a single one-to-

one mapping I under which, for every arc b in P, Match((b,S2), I, (b,S1)).A
An initial state for a program P represents both P and a set of

inputs for P. Equal initial states represent the same set of inputs for

P. Similarly, equal final states represent the same set of program outputs

for P (if P is well-behaved). For P to be functional, then, any two

halted firing sequences starting in the same or equal initial states must

yield the same or equal final states:

Definition 2.4-4 A program P is functional iff for every two equal initial

states for P, S1 and $2, and halted firing sequences Q1 starting in S1 ana

22 starting in $2, S2"22 equals S 12 1 A

Testing a program P for functionality according to this definition

is a complex procedure: every initial state for P and every firing

sequence starting in it must be checked. It is therefore worthwhile to

seek ways to reduce this complexity; i.e., a priori conditions on two

initial states S 1 and S2 and firing sequences 21 and 22 starting in these

states which will guarantee that S22.2 equals SI'21.

-81-

S2 2 2 equals SI'21 iff one can be obtained from the other by uniformly

replacing certain distinct pointers and nodes with other distinct pointers

and nodes. The pointers and nodes in any final state S-2 are the pointers

and nodes in S plus those in the ordered pairs in the Copy, Const, Append,

and Remove firings in 9. Therefore, S 2 .22 equals SI'21 iff

1. S 2 is S with certain pointers and nodes uniformly replaced with

others, and

2. S22 is I with certain pointers and nodes in the ordered pairs in the

firings replaced by others not in S2 .

The first condition has been formalized and abbreviated as "S2 equals S I".

The second condition implies that the particualr pointer-node pairs in

firings in a firing sequence have no bearing on the issue of functionality;

that is, it is only the order of operator firings which matters. Removing

the ordered pairs entirely from a firing sequence yields what may be

termed its reduction; therefore, the second condition above is equivalent

to "the reductions of 21 and 22 are identical." This may be further

abbreviated as "22 equals 21":

Definition 2.4-5 Let 2 be any firing sequence. Then the reduction of Q

is obtained from 2 by replacing each firing (d,(p,n)) with the firing

which is just d.

The reduction of any firing sequence starting in a state S is a

reduced firing sequence starting in S.

Let 2 i and 2 2 be any two firing sequences. Then 2 equals 21 iff the

reductions of 22 and 21 are identical.

a

-82-

Thus the complexity of testing for functionality is reduced by the

fact that, if S2 equals S1 and 22 equals 21, then 2.22 equals S1.21

(Theorem 5.3-1).

Finally, a program together with a set of inputs to it can be

associated with a class of initial states: the class of all those equal

states which represent that program with those inputs. Any such class is

in fact an equivalence class; i.e., the "equals" relation between states is

an equivalence relation. This is proven as a corollary to the following:

Theorem 2.4-1 The "Match" relation is symmetric and transitive.

Proof: (The proof of this, which is a lengthy but straightforward

manipulation of definitions, has been removed to Appendix A.)

A
Corollary 2.4-1 The "equals" relation between states is an equivalence

relation.

Proof: Reflexivity:

(1) Let S - (r,U) be any state, where U - (NJ,SM). Let b be any arc

in the program of which r is a configuration. Then either:

b has no token in r and b has no token in r, or

b has a non-pointer value in r and b has the same value, or

b has a pointer value p in r and b has pointer value p, and
I

u-fl(p) I U.fl(p)

where I: N -+ N is the identity mapping Def. 2.4-1

(2) There is a single map I: N -. N under which, for each arc b,

Katch((b,S), I, (bS)) (1)+Def. 2.4-2

0) S equals S (2)+Def. 2.4-3

2,-' #

Pr

-83-

Symmetry:

(4) Let S1 and S2 be two states for any program P. Then S2 equals S1

= there is a single mapping I under which, for each arc b in P,

Match((b,S2), I, (b,S1)) Def. 2.4-3

(5) - for each arc b in P, Match((b,S1), I-1, (b,S2)) Thm. 2.4-1

(6) - SI equals S2 Def. 2.4-3

Transitivity:

(7) Let $l, S2, and S3 be three states for the same program P. Then S2

equals S1 and S3 equals S2 = there are mappings II and 12 such

that, for each arc b in P, Match((b,S 2), I1, (b,S1)) and

Match((b,S3), 12, (b,S2)) Def. 2.4-3

(8) - for each arc b in P, Match((b,S3), I2"I1, (b,S1)) Thm. 2.4-1

(9) - S3 equals S1 Def. 2.4-3

2.4.2 Equivalence

The primary goal of the thesis is to develop a language LD and an

interpreter for it such that an appropriate translation from LB to LD

produces equivalent programs. The purpose of this section is to provide

a meaningful definition of equivalence of an LD program to an LBV program.

Intuitively, two programs are equivalent if both always produce the same

outputs from the same inputs. An initial state for either program

represents a set of inputs to that program. It Is necessary now to

characterize two initial states which represent the same program inputs to

different programs.

Two initial states of the same program represent the same inputs iff

each program input arc has matching conditions in the two states.

-84-

Extending this to states of different programs requires first establishing

a onew-to-one correspondence between their sets of program input arcs; then

it can be said that two initial states represent the same inputs if f the

conditions of corresponding program input arcs match. The analogous

characterization of equal program outputs necessitates a one-to-one

correspondence between sets of program output arcs in the programs.

When dealing with single programs in the discussion on functionality,

the notions of equal inputs and of equal outputs were generalized to the

concept of equal states: Two states of the same program are equal if f

every arc in the program has matching conditions in the two states.

Applying this generalization process to the case of two states of different

programs, however, is complicated by the possibility of syntactic differ-

ences between the programs. For example, substitutions like that shown in

Figure 2.2-3 will be used in the translation of an LBV program to an LD

program. Thus the latter will have extra arcs, such as that from the Copy

to the Assign in that Figure. Ignoring these arcs, however, there will be

an obvious one-to-one correspondence between the sets of remaining arcs in

the two programs. This is a similarity mapping:

Definition 2.4-6 Given two programs P and P', a similarity mappingt A is

a one-to-one map from the arcs of P to the arcs of P' which carries

program input arcs to program input arcs and program output arcs to

program output arcs.

Two states S and S' of different programs can be considered the same

if the conditions of at least the similar arcs in them match, In this

case, it will be said that S' simulates S:

-85-

Definition 2.4-7 Let P and P' be two programs with a similarity mapping

A from P to P'. Then a state S' of P' simulates a state S of P iff there

is a single mapping I such that, for each arc b in P,

Match((A(b),S'), I, (b,S)) A
A suitable formal definition of equivalence of programs in different

languages follows directly from this:

Definition 2.4-8 A program P' is equivalent to a program P iff:

1. There is a similarity mapping from P to P'.

2. For every initial state S of P and halted firing sequence 2 starting

in S:

for every initial state S' for P' simulating S, and halted

firing sequence 2' starting in S':

the final state S''"2' simulates S*2. A
This definition is a weak one, but it is strong enough for the purpose of

the thesis, which is again: To develop a language LD, with interpreter,

and a translation from V to LD which produces an equivalent program with

maximal structure concurrency. Chapter 3 next develops the new language

and interpreter, and the translation. Chapters 4, 5, 6, and 7 then prove

formally that the translation does produce an equivalent LD program from

any well-behaved LBV program.

-86-

Chapter 3

Controlling Structure Concurrency

This chapter contains the developments which meet the primary goal

of the thesis. It describes a language LD and an interpreter for it,

designed so that every program is functional. It then gives an algorithm

to translate any well-behaved LBV program P into an equivalent LD program

P'. P' will exhibit a maximal degree of structure concurrency (subject

to certain qualifications discussed in Section 8.2.1.4).

The chapter commences by studying structure concurrency in LBS on

the standard interpreter, to see exactly when it may cause non-

functionality. Section 3.2 argues that this concurrency can be controlled

so as to eliminate non-functionality through a combination of two tech-

niques. The first is to re-write the program, inserting operators called

sequencers at critical points. The second is to withhold the pointer-

valued output tokens of a Select firing until certain existing tokens with

the same pointer value have disappeared; this requires modifying the

standard data-flow interpreter. The language LD is just the set of LBS

programs which have sequencers in the right places and satisfy a restric-

tion on the origins of pointer inputs to Assign, Update, and Delete

operators. Every LD program is functional on the modified data-flow

interpreter. Section 3.4 then gives the translation algorithm, and proves

that for every LBV program P, its translation P' is in LD, and that if P

is well-behaved and P' is functional, then P' is equivalent to P; the

proof that every LD program is functional occupies the rest of the thesis.

-87-

3.1 Interference

It is a well-established principle [9] that the key to guaranteeing

functionality is preventing interference:

Definition 3.1-1 Given an initial state S for any data-flow program P

and a firing sequence 2p1p 2 starting in S, the two firings cpi and 2

interfere (with each other) iff:

. (P2l is also a firing sequence starting in S, and

2. S'R PIP 2 and S'2P2 are not identical states. A
An example of interference can be seen between firings of the actors

U and S2 in AlterS. Figure 2.3-4 depicts an initial state S for AlterS.

One firing sequence starting in S is 2 - G,SI,CIC 2. In the state S'Q

(depicted in Figure 2.3-6), both S2 and U are enabled. Therefore, both

S2,S2,U and Q,U,S2 are firing sequences starting in S (since data flow is

persistent: firing one actor cannot disable another). However, the

states S*Q,S2,U (Figure 3.1-1(a)) and S'2,U,S2 (Figure 3.1-1(b)) are

clearly not identical: the tokens on the output arcs of S2 have as values

pointers to different nodes.

The reason for this interference is that firing Update U changes the

ordered pair with selector 'next' in node n 's content, while firing Select1

S2 reads the ordered pair with selector 'next' in that content. Therefore,

S2 may or may not read the pair written by U, depending on whether or not

U fires before it. Because of this dependence, the existence of two firing

sequences in which S2 and U fire in a different relative order implies

the possibility of non-functionality. This interference does not imply

tf the necessity of non-functionality; there are pathological cases, discussed

- - --- .--- -,-r

I n

(a)

SG SiC, 2 US 2

C2
((b)

An Exmpleof Iterfrenc

Figur 3.1-

-89-

shortly, in which it is harmless. But eliminating all possible interfer-

ence is the easiest way to guarantee functionality. For this reason, it is

important to be able to recognize all potential instances of interference.

The interference between U and S2 falls into the broad category of

one operator trying to change a stored item and another trying to read

that item. (An item is either the value in a given node's content or the

ordered pair in that content containing a given selector.) Interference

can also occur between two operators trying to change the same stored item.

For example, if two Assign operators d and d2 are both enabled in some

state S*2 with pointers to a node n as inputs, then in either of the states

S*2d1 d2 or S'Qd 2dl, the value of n is the value stored by the last of dI

and d2 to fire. Thus these two states are different (except in the singu-

lar case that both Assign firings wrote the same value). Such interference

may lead to non-functionality in one of two ways:

1. An fetch of n's value immediately after the last of these Assign

firings will have different outputs in different firing sequences.

2. If no Assign firing follows these two, then different firing

sequences lead to final states in which n has different values.

The strategy for guaranteeing functionality, presented in Section 3.2, is

to eliminate all potential interference. As a first step, the above

generalizations are particularized to LBS, yielding exact conditions under

which two firings potentially interfere.

3.1.1 Potential Interference in LS

This section analyzes the conditions under which firings (P and of

actors d and d2 in a program P can interfere: what types of actors d and

1 2-1

A

-90-

d2 must be and how the firings' inputs must be related. It assumes the

requisite initial state S for P and firing sequence 912 starting in

such that 2 i is also a firing sequence starting in S.

Both d and d2 must be enabled in state S'2. This means that each

of them has tokens on all of its input arcs in that state. It is the

fortunate property of data flow that nothing can change the value of a

token once it appears on an arc. Therefore, the values input by firings

(i and T2 do not depend on which firing occurs first.

If one of these actors, say di, is not a structure operator, then

the only effect of (I on the state is to place tokens on d,'s output

arcs. The values of those tokens depend only on the values input by

Therefore, the state change effected by (I does not depend on whether or

not it precedes (2" Since the effect of (P2 depends on at most 2's

inputs and the heap, neither of which is changed by cpl, it is independent

of whether or not T2 follows TV

Therefore, for T, and (2 to interfere, dl and d2 must both be

structure operators. As noted in general earlier, one of the firings,

say (2' must change a stored item, and the other must either change that

same item or output a value which depends on that item. Each firing of

a structure operator changes or depends upon items wholly within one

node's content. That node is either the one pointed to by the firing's

input or one activated by the firing. If T2 were to change the content

of a node n which it activated, then ti could not change or depend upon

n's content. This is because (1) node n is not active in S*", before T2

and so no token in that state, including Tl'S input, has a pointer to n

as its value, and (2) if (1 also activates a node, then that node is

-91-

necessarily distinct from n. Therefore, (2 must change the content of the

node pointed to by its input, and (p must input this same pointer. This

implies that d2 must be either an Assign, Update, or Delete operator.

(Since no LBV operator can change the content of an already-active node,

no two firings of LV operators can interfere. Hence, all LBV programs

are functional.)

From this, necessary conditions for firings (p and (2 to interfere

include:

1. both are firings of structure operators, one an Assign, Update,

or Delete, and

2. both have the same (number-l) pointer input.

Certain pairs of firings cannot interfere, by virtue of the actions of

the actors of which they are firings. Otherwise, the firings potentially

interfere. The strategy for precluding actual interference in this latter

case is to insure that the firings are sequenced by S; i.e., that they

occur in the same relative order in all firing sequences starting in S.

This strategy is explained and justified shortly. First, the structure

operations in LBS are examined to see which ones cannot potentially

interfere with each other.

The following observations are made about potential interference

between two firings of LBS structure operators with pointer inputs

(number-1 pointer input for an Update) equal to p: Let m = f(p).

1. The LS structure operators can be partitioned into two classes:

read class - Fetch, First, Next, Select, Copy

write class - Assign, Update, Delete

so that no two firings of read-class operators potentially interfere.

-~ Iii%**-

-92-

2. A Copy firing potentially interferes with any firing of a write-

class operator, because the content of the node activated by the

Copy firing depends on the entire content of m.

3. An Assign firing potentially interferes with a Fetch or Assign

firing.

4. A First or Next firing potentially interferes with an Update or

Delete firing, because. the latter modifies the set O(m) of selectors

off m. This has Lhe following possible consequence: Let s1 be the

selector input of a Next firing, or in the case of a First firing,

let s1 be a lower bound of the selector domain Z with respect to the

total ordering <. Let s2 be the selector which would be output by

firing the First or Next first. Then either:

a. a Delete firing could remove the ordered pair with s2' or

b. an Update firing could add a pair with selector s3 such that

s < 53 < s2
5. A Select firing potentially interferes with an Update or Delete

firing iff their selector inputs are the same.

6. Two Update firings or an Update and a Delete firing potentially

interfere iff their selector inputs are the same.

These observations are summarized in the following:

Definition 3.1-2 The read class of LBS structure operations consists of

Fetch, First, Next, Select, and Copy. The write class consists of Assign,

Update, and Delete.

Given an initial state S for an LBS program, and a firing sequence

2 starting in S, any two firings in Q having the same number-l input

-93-

potentially interfere based on their operations and selector inputs,

according to Table 3.1-1.

A
Theorem 3.1-1 Two firings interfere only if they potentially interfere.

3.1.2 Determinacy

Given an initial state S for a program P, the existence of two

potentially-interfering firings p1 and (2 in a firing sequence starting in

S does not necessarily imply that P is non-functional. P may still be

functional for any of the following reasons:

1. (Sequencing) There is no firing sequence 2 starting in S such that

both 2(l52 and 2 2P1 are firing sequences starting in S.

2. (Repetition) There is such an 2, but S'21Y2 and S2(P2(p1 are

identical states. This may occur if, for example, (2 is an Assign

firing which assigns v as the value of node n, and either:

a. I is a Fetch firing and n has value v in S'2, so that (p

outputs v whether or not (p2 precedes it, or

b. l is an Assign firing which also assigns value v, so that n

has value v after both firings regardless of their order.

3. (Lossiness) (p and (2 actually interfere, but the aspects in which

states S'2PI1p 2 and S2(p2cpI differ do not enter into determination

of the final state.

Potentially-interfering firings in a firing sequence are inevitable,

for there is little purpose in a firing which writes an item into a node's

content if no subsequent firing will ever read that item. Insuring a

program's functionality thus necessitates (1) identifying whenever firings

-94-

Fetch First Next Select Copy Assign Update Delete

Fetch

First V

Next V

Select , ,

Copy V V V
Assign V V V

Update V V * * *

Delete V V * V *

Legend:

V two firings of operators of these types potentially interfere

• two firings of operators of these types potentially interfere

iff their selector inputs are the same

Interference Potential of Firings with the Same Pointer Input

Table 3.1-1

of two operators potentially interfere, and (2) seeing that each such in-

stance does not induce non-functionality, for one of the above three

reasons.

By far the most common reason for functionality is freedom from

conflict. A conflict-free program is one in which every pair of

potentially-interfering firings is sequenced:

Definition 3.1-3 Given any initial state S for a data-flow program P,

the i th firing of actor d 1 in P is sequenced by S after the J th firing of

-95-

actor d& iff, for all firing sequences 2 starting in S, the ith firing
th

of d1 in 2 follows the j firing of d2 in 2.

A program P is conflict-free iff the following is true for every

initial state S for P and every two structure operators d and d2 in P:

th
If there is a firing sequence starting in S in which the i firing of d

potentially interferes with the jth firing of d2, which it follows, then

the ith firing of d1 is sequenced by S after the jth firing of d2 .

Functionality of a conflict-laden program by virtue of repetition or

lossiness is pathological and difficult to verify. Therefore, the strategy

for guaranteeing functionality is to guarantee freedom from conflict.

Lack of conflict in fact implies a much stronger property of programs

than functionality: determinacy. A determinate program is one which not

only always produces the same outputs given the same inputs, but always

does so "in the same way". This important concept is made more precise

in the following:

Given a program P, the set of all initial states which represent the

same inputs to P is an equivalence class E. Therefore, P is determinate

iff any two firing sequences QI and 22 starting in any two states in any

such E lead "in the same way" to equal final states, where "in the same

way" is defined by the five Determinacy Assertions discussed in the

following paragraphs.

The sets of firings in 21 and 22 must be the stne, and each firing

must have the same set of non-pointer inputs in 21 and 22:

1. For each actor d in P, the number of firings of d in 21 equals the

number of firings of d in 2"2

AO-AOB3 233 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE-ETC F/G 9/2
DATA-STRUCTURING OPERATIONS IN CONCURRENT COMPUTATIONS. (U)
OCT 79 D L ISAMAN

UNCLASSIFIED MIT/LCS/TR-224 ML26//////

Ellllllllllllu
E///E//EE////E
////EE//EEE/I
//////////I//l
/////III//I/I/fllfll~f

I 2.2
I'll'111112-0

IIBU I. 8

-96-

2. For any actor d and integers i and J, the number-i input to the t

thfiring of d in 2 is not a pointer iff the number-i input to the j

firing of d in 22 is not a pointer. Furthermore, if those two input

values are not pointers, then they are identical.

Since pointer values are arbitrary, any single given firing may have

different pointer-valued inputs in 21 and 2"2 If two different firings

both have the same pointer-valued input in 21I however, then those firings

must have the same pointer-valued input in 2"2 Put another way:

3. There is a one-to-one map F over pointers such that the number-i
th

input to the j firing of d in 2i is pointer p iff the number-i
th

input to the j firing of d in 2 is F(p).

In addition to these constraints on the value of an input to a

firing, the other firing from whose output that value was transferred must

be the same in S2 and 22, whether the transfer is direct or indirect.

A direct transfer occurs via an arc of the program: if the token removed

from an input arc of actor d1 by its jth firing was placed there by the

th
k firing of actor d2, then the value of that token was transferred

directly from the latter output to the former input. Thus:

4. For every arc b in P, let b be an output arc of d2 and an input arc

of d . Then the j th firing of d1 in 21 removes a token placed on b

by the kth firing of d2 iff the j th firing of d1 in 22 removes a

token placed on b by the kth firing of d2.

An indirect transfer of value v from the k th firing of d2 to the

thnumber-i input of the j firing of d1 proceeds via the heap, as follows:

First v is transferred directly from the kth firing of d2 to the number-2

input of an Assign firing, which writes v as the value of a node.

-97-

Subsequently, v is output by a Fetch firing F which is in the reach of A.

Then it is transferred directly from F's output to the number-i input of
th

the j firing of d The complex concept of reach is central to the

understanding of the interrelationships between firings of structure

operators. It is discussed in detail in Chapter 5; since the intent here

is only to provide an intuitive introduction to determinacy, the following

brief explanation of reach should suffice.

Let A be any Assign firing which inputs a pointer p, and let n - f(p).

For any other Fetch or Assign firing F in the same firing sequence, let q

be F's pointer input and let m = fl(q). Then F is in the reach of A iff

its outputs necessarily depend just on the value written by A; i.e., iff

a. m - n and F occurs while n still has the value written by A, or

b. m is a copy of n made while n still had the value written by A, and

F occurs while m still has its initial value copied from n.

The indirect transfers will be the same in 2 and 2 if the direct

transfers are the same and

5. For each Assign (or Update/Delete) firing A, the reach of A in 21

contains the same firings as the reach of A in 2"2

The five assertions just listed complete the definition of a deter-

minate program. The awkward statement of the definition in terms of the

usual model of data flow is a major motivation for the development, in

Chapter 4, of a new model of concurrent computation. This model permits

a more precise definition of reach and a much more concise definition of

determinacy, as will be seen in Chapters 5 and 6.

RZi

-98-

Since determinacy is the only practical path to functionality, the

primary goal of the thesis is refined thusly: Develop a language LD and

an interpreter for it, together with a translation algorithm which takes

any well-behaved LBV program P into an L program which, on the new

interpreter, is determinate, equivalent to P, and maximally-concurrent.

This development is in three steps:

1. Modify the standard interpreter so that an easily-recognized class

LD of LS programs are conflict-free and have maximal concurrency

consistent with that freedom.

2. Prove that freedom from conflict guarantees determinacy of a data-

flow program, and that determinacy in turn guarantees functionality.

3. Present a translation algorithm which takes any well-behaved LBV

program into an equivalent LD program.

The first and third steps are undertaken in the remainder of this chapter;

the second step occupies the rest of the thesis.

-99-

3.2 Guaranteeing Determinacy

This section describes techniques for eliminating enough structure

concurrency from an arbitrary k$ program to guarantee its determinacy.

Any data-flow program without structure operators is necessarily deter-

minate. The presence of structure operators inposes the following addi-

tional requirement: If two firings potentially interfere in any firing

sequence starting in initial state S, then they must be sequenced by S.

The easiest way to sequence the ith firing of d after the jth firing

of d2 is to ensure that d is not enabled for the ith time until after d2

has fired for the jth time. The easiest way to prevent an actor's being

enabled is to deny it one of its input tokens. The only input common to

all structure operators is a number-i pointer input. Accordingly,

techniques are presented in this section to:

1. identify which firings of which structure operators in a program

might potentially interfere in a firing sequence 2, and

2. sequence each such pair of firings, by withholding the pointer

input to the second until the first has occurred.

There are two different techniques used, depending on whether the

two firings are in the same blocking group in Q or in different ones.

Section 3.2.1 defines blocking groups and explains why different

techniques are appropriate in the two cases. Sections 3.2.2 and 3.2.3

then describe the two techniques for identifying and sequencing

potentially-interfering firings.

-100-

3.2.1 Blocking Groups

Every pointer-valued token appearing in a state can be traced back to

a unique origin, either a program input token or the output of a firing of

a Copy or Select operator. (The only other way in which a pointer-valued

token appears on an arc is as the output of a firing of a pI actor which

removed an identical token from another arc; such firings are thought of

as propagating rather than creating the token.) A blocking group in a

firing sequence consists of all firings which remove pointer-valued tokens

having a common origin. The origin of each token is easily perceived by

considering the tagged data-flow interpreter, explained below in

Section 3.2.1.1. Section 3.2.1.2 then explains the significance of two

firings being in the same or in different blocking groups.

3.2.1.1 The Tagged Interpreter

The tagged data-flow interpreter is introduced informally here,

purely for explanatory purposes. It is not the modified interpreter

which meets the goal of the thesis; that is defined formally later.

A state of the tagged interpreter is simiTlr to a standard inter-

preter state (Definition 2.1-3). The only difference is that pointers are

replaced by tagged pointers as values for tokens. A tagged pointer is an

ordered pair consisting of a pointer p and a tag e, which indicates the

origin of the token. This tagged pointer is written TP(p,e).

An initial state of the tagged interpreter is one obtained from an

initial standard state by giving each pointer-valued token a new value,

as follows: If the token is on the number-i input arc of the program and

has value p, then its new value is TP(p,Tg(ID,i)). Each firing of a pI

-101-

actor which inputs a token with a tagged pointer outputs a token with the

same tagged pointer. A firing of a structure operator with input TP(p,e)

ignores the tag e, outputting, in general, the same values as it would on

the standard interpreter given just p as input. The exception is that the
th

n firing of a Copy or Select operator d in a firing sequence outputs

tagged pointers with the tag Tg(d,n).

There is a one-to-one correspondence between the possible sequences

of states undergone by the standard interpreter and those undergone by

the tagged interpreter. For example, for any standard state sequence

starting in an initial state for program AlterS, the corresponding tagged

state sequence is given by the following algorithm:

Replace any token with pointer with a token having as

value p appearing on value the tagged pointer

the X program input arc TP(pTg(ID,2))

the output arc of Si. i1,2 TP(p,Tg(Sil))

the output arc of Ci, i1,2 TP(p,Tg(C,91))

Therefore, a program is determinate on the tagged interpreter iff it is

determinate on the standard interpreter.

3.2.1.2 Intra-Group versus Inter-Group Sequencing

Each firing of a structure operator on the tagged interpreter removes

a token having a tagged pointer as value. The tag identifies the origin

of the token. For each tag e and firing sequence S, the blockin group.

B 2(e) is the set of all firings in 2 which remove tokens with tag e from

their number-1 input arcs (or more precisely, which remove tokens with

which are associated tagged pointers containing tag e). For example, in

-102-

any firing sequence 2 for AlterS, the firings of U and S2 are both in

Ba(Tg(Cl, 1)), while the firings of A and F are in distinct blocking

groups B2 (Tg(C2,)) and B (T802,1)).

Two tokens with the same tag have the same pointer value. Thus, two

structure operator firings in the same blocking group necessarily have

equal number-l inputs. Their interference potential is then determined

solely by their operations and their selector inputs, according to

Table 3.1-1. The firings of U and S2, which are always in the same

blocking group, always potentially interfere. Since they are not sequenced

by any initial state, AlterS is non-determinate. It is easy to ascertain

syntactically whether or not firings of two actors in a program can ever

be in the same blocking group; this is done in Section 3.2.1.3. If so, the

program can be re-written to guarantee that one of the actors is never

enabled with a given tagged pointer as input until the other one has con-

sumed an identical input. This is demonstrated in Section 3.2.2.

Two firings in distinct blocking groups may or may not have equal

pointer inputs. From Figure 3.1-1, the firings of A and F in AlterS will

have equal pointer inputs if S2 fires after U. I.e., A and F potentially

interfere, even if S 2's firing is sequenced after U's (Figure 3.2-1).

Thus, AlterS will be determinate only if A and F are somehow sequenced.

But in a similar program in which U and S2 could have itnequal selector

inputs, A and F could have unequal pointer inputs. In that case, A and F

should not be sequenced, in the interest of increased concurrency. There-

fore, firings in distinct blocking groups should be sequenced only if their

pointer inputs are actually equal. In general, this discrimination is

-143-

" -CS,1,2U2A, C 1CS IClC2,,S I,

" 2 U "2

33

S.GS 1,CsC 2 9 ,S 2 OA,F SG,S19 C1,C 2 *U'S 2 F,A

A Further Example of interference

Figure 3.2-1

possible only through a "run-time" inspection of these inputs. This

requires modifying the interpreter, as described in Section 3.2.3.

3.2.1.3 Distribution Groups

As mentioned, it is easy to identify those pairs of actors in a

program of which firings can be In the same blocking group: Firings of

two actors can be in the same blocking group only if the actors are in

the same maximal pointer distribution group, defined in the following.

Definition 3.2-1 A kernel in a, program P is a subset K of the data arcs

of P which satisfies one of the following two specifications:

I... •- ::-.'

-104-

1. For any i, let b be the number-i program input arc of P. Then {b)

is a kernel, the one denoted K(IDi).

2. For any actor d in P, and for i - 1 or i - 2, the set

{bj b is in the number-i group of output arcs of d} is a kernel,

and is denoted K(d,i).

The primary input arc of a structure operator is its number-l input

arc; the primary input arcs of a pI actor are its transmitted-input arcs.

For any arc b in P, the channels starting at b are subsets of the

data arcs of P satisfying the following recursive specification:

1. b is in every channel starting in b.

2. If b is an output arc of a pI actor d, then any channel

containing a primary input arc of d also contains arc b.

For any kernel K, the distribution group for K, G(K), is ;the set of

all structure and pI actors in P whose primary input arcs are in channels

starting at arcs in K.

The set of maximal pointer distribution groups (m.p.d.g.'s) in P is

JG(K)I 31: K - K(ID,i) v

3S: S labels a Select operator in P and K - K(S,l) v

3C: C labels a Copy operator in P and K - K(C,l) or K - K(C,2)}

An m.p.d.g. describes a relation among the actors in a program which

is static, based only on the unchanging program. A blocking group, on

the other hand, establishes a dynamic relation among firings of actors,

which may change from one firing sequence to another. The two relations

are closely coupled, as shown in

t

-105-

The Static/Dynamic Group Relationship: Given a firing sequence 2 for

program P on the tagged interpreter, for every firing p in 2 of a

structure operator d in P, there is a tag e such that pEB 2 (e). Also:

1. If e - Tg(ID,i) for some i, then d is in G(K(ID,i)).

2. If e - Tg(S,n) for some n, where S is a Select or Copy operator in

P, then d is in G(K(S,l)), if S is a Select, or d is in G(K(S,l))

or G(K(S,2)), if S is a Copy.

According to this relationship, which is proven as Lemma 3.3-1,

firings of each of two actors are in the same blocking group only if the

actors are in the same or closely-related m.p.d.g.'s. E.g., in AlterS the

firings of U and S2 are always in a comon blocking group, and U and S2

are in the same m.p.d.g. (The reason for the ungainly separation into two

m.p.d.g.'s per Copy operator will be explained at the end t)f Section 3.3.)

Not all firings of actors in one m.p.d.g. are in the same blocking

group. For example, if AlterS were embedded in a loop, so that each actor

in it fired several times in one firing sequence, then for each n, the only

firings to input tokens with tag Tg(Cl,n) would be the nth firings of U

and S2. Thus the ith firing of U and the jth firing of S2% for ij, would

be in distinct blocking groups.

With this background, it is easy to explain the two techniques for

identifying and sequencing potentially-interfering firings: one for firings

in the same blocking group and the other for distinct groups.

3.2.2 Sequencing Within a Blocking Group

This section introduces the technique for identifying and sequencing

every pair of potentially-interfering firings which are in the same

-106-

blocking group. The identification problem has already largely been

solved: A firing of actor d in program P is not in the same blocking
1

group as a firing of d2 unless d1 and d2 are in the same m.p.d.g. Further-

more, Table 3.1-1 may show that firings of d1 and d2 could never poten-

tially interfere. Otherwise, certain pairs of firings of d1 and d2 will

be in common blocking groups and will potentially interfere. Those pairs,

in which on the tagged interpreter both firings remove tokens with the

same tag, must be sequenced by every initial state of P.

The sequencing problem is to guarantee that a certain firing of d29

th
say the j , which removes a token with tag e, never occurs until after,

say, the ith firing of d., which removes an identical token. As mentioned

earlier, the surest solution is to prevent the jth appearance of a token

on d2's input arc until after the i
th firing of d1 has occurred. This can

always be accomplished by re-writing the program, inserting a sequencer

between d1 and d2

Definition 3.2-2 An (r-ary) sequencer is an r-ary data-flow operator with

which is associated the projection function Pr, defined by

P1(Xlx 2, g xr) X 1

Just like any other data-flow operator, a sequencer is not enabled to fire

until it has tokens on all of its input arcs. When it fires, it ignores

all but one input token, and places on its output arcs tokens identical to

that one input token (which on the tagged interpreter may be a tagged

pointer). Therefore, a sequencer is a pI actor, with its number-1 input

arc being its only transmitted-input arc.

_ rn-

-107-

The program AlterS' (Figure 3.2-2) illustrates the use of a sequencer

to sequence all potentially-interfering firings of U and S2 in AlterS.

(This figure uses a graphical convention in which the transmitted-input

arc of a sequencer is connected to its output arcs through the actor

symbol.) For each n, the nth firing of Copy C1 on the tagged interpreter

places tokens with the unique tag e = Tg(Cl,n) on all output arcs of C1 .

Those tokens will be input by the nth firings of U and of sequencer Q.

Tokens with tag e cannot appear on other arcs of the program until after
thth th

the nth firing of Q. Q is not enabled for the n time until the n

appearance of some token on its other input arc. This appearance occurs

as a result of the nth firing of U, which is the firing of U which

consumes a token with tag e. Therefore, no tokens with tag e can appear

on the input arcs of any structure operators other than U before that

firing of U which consumes a token with tag e. Of all the firings of

structure operators in blocking group B2 (e), the first to occur is the

firing of U. Therefore, those firings of U and S2 which are in the same

blocking group are sequenced.

Sequencers can be used in this manner to sequence any two firings in

the same blocking group. Any program in which, for every initial state

S, every pair of potentially-interfering firings in a common blocking

group are sequenced by S satisfies the Determinacy Condition (this

statement will be formalized later.)

The example of AlterS' suggests a simplistic algorithm to translate

any L3V program into an LBS program:

m l u i6

-10 8-

Y

S 1 CQ

Sele Copry ltrS

Fiur 3.-

-109-

Algorithm 3.2-1 For any LBV program P, perform the substitutions shown

in Figure 3.2-3 for every Const, Append, and Remove operator in P.

A
Denote by L S the set of LBS programs

LS = {P'I
P ' is the translation of an LBV program)

Then the following argues informally that each P' in LS satisfies the

Determinacy Condition; a formal proof is given in Section 3.4.

For any LBV program P, let P' be the program resulting from applying

Algorithm 3.2-1 to P. Let d1 and d 2 be two operators in P' such that

there is a firing sequence 2 in which two firings of d1 and d 2 are in the

same blocking group B (e) and potentially interfere. Then, from

Table 3.1-1, at least one of the actors, say di, must be a write-class

operator: Assign, Update, or Delete. Since there is no such operator in

any LBV program, d must have been introduced into P' by the translation

algorithm. Comparing Figures 3.2-2 and 3.2-3, then, in P' the operator d1

and a sequencer are connected to each other and to the outputs of a Copy

operator just as are U and Q in AlterS'. Therefore, the conclusion drawn

with respect to the latter program applies to the former: Every firing

of d is sequenced before any other structure operator firing which is in

the same blocking group. Therefore, any two firings which potentially

interfere and are in the same blocking group are sequenced. This is the

Determinacy Condition, and it holds for every program P' which is the

translation of any LBV program.

This completes the informal explantion of how, at least in LS

programs, all pairs of potentially-interfering firings in common blocking

I , -W

-110-

copy

-Cop

/
Append

Upat
I Copy

IG

- - -I

Oper tor Sub titu ion in Tran lat ng rom BV o L

Figure 3.2-3

groups are sequenced. The technique is formally verified in

Section 3.4. The next sub-section now describes a new technique for

sequencing pairs of firings from distinct blocking groups, which is a

major contribution of the thesis.

3.2.3 Sequencing Firings in Distinct Blocking Groups

This section analyzes the programs in LS with the aid of the tagged

interpreter. The goal is a method which insures the following for any

firings sequence 9 starting in any initial state S: If two firings which

are in different blocking groups in 2 potentially interfere, then they

are sequenced by S. I.e., for any two distinct blocking groups B 2 (e1)

and B (e2), the methodmust (1) determine which pairs of firings, one from
22

each group, potentia"y interfere, and then (2) insure that each such

pair is sequenced.

The most straightforward method will be used, which is to:

(1) determine if there is any firing in B (e1) which potentially

interferes with any firing in B2 (e2), and

(2) if so, insure that all firings in B (e2) are sequenced, say,

after all firings in B (el). I.e., insure that in no firing

sequence 2 starting in S does a firing in B2 (eI) follow a

firing in B2 (e2).

The next paragraph explains a general technique for insuring that entire

blocking groups are sequenced (step (2) above). This is followed by a

characterization of those groups in an LS program which must be

sequenced (according to step (1) above).

-112-

The one thing which all firings in B2 (e2) have in common on the

tagged interpreter is that they remove tokens with tag e2. None of

these firings occurs until after the first appearance (on arcs of the

configuration) of such tokens. Therefore, a simple sequencing technique

is to insure that the first tokens with tag e2 do not appear on arcs

until all firings in B (eI) have occurred. This implies directly that

the first appearance of a token with tag e1 (which precedes all firings in

B 2(e1)) must precede the first appearance of a token with tag e2. Given

that the first tokens with tag e1 have appeared, an easily-implemented

indication that all firings in B (e1) have occurred is the disappearance

of the last such token. (This is because for all firings (p in 2 except

one, if (p places a token with tag e1 on an arc, there must have been such

a token on another arc for (p to remove.) These two observations give

rise to

The Group Sequencing Technique: For any firing sequence 2, if

1. the first tokens with tag e1 appear before the first tokens

with tag e2, and

2. the first tokens with tag e2 do not appear while there are still

tokens with tag e1 in the configuration,

then no firing in B (e2) precedes a firing in B (el).

This is a general technique for sequencing all firings in one blocking

group after all firings in another. Now a rule is developed establishing

when two blocking groups in an LS program should be so sequenced.

Let d1 and d2 be any two actors in an LS program such that, in some

firing sequence 2, a firing (pI of dl potentially interferes with a firing

[U

-113-

p2 of d2, and (p and (2 are in distinct blocking groups B (e) and B (t).

Then at least one of the actors, say dl, must be in the write-class (by

Table 3.1-1). Firing (p, removes a token with tag e, by definition of

blocking group. The following conclusions about e follow from the

Static/Dynamic Group Relationship:

1. If e - Tg(ID,i) for some i, then dI is in G(K(ID,i)).

2. If e - Tg(S,n) for some n, where S is a Select operator, then d

is in G(K(S,l)).

It has already been argued from Figure 3.2-3 that for each write-class

operator d in an LS program, the primary input arc of d is an output arc

of a Copy operator; i.e., d1 is in G(K(C,l)) or G(K(C,2)) for some Copy

operator C. Therefore, both 1. an4 2. above are contravened, so

the firing pI of dl removes a token with tag e - Tg(C,n) for

some n, where C is a Copy operator.

Let p be the pointer such that tagged pointer TP(p,Tg(C,n)) is the

value of that token removed by p; then that tagged pointer is the output

of the nth firing of C. Since (2 is in B (e'), it removes a token with

tag e'; let p' be such that TP(p',e') is the value of that token. Then

the following conclusions can be drawn about e':

1. If e' - Tg(C',J) for some J, where C' is a Copy, then p' is the

thpointer output by the j firing of C'. Since e'$e, this is not

the nth firing of C. Since each Copy firing in 2 outputs a unique

pointer, p'#p. But then p, and @2 do not potentially interfere.

2. If e' - Tg(ID,i) for some i, then there are tagged pointers with

pointer p' in the initial state. This implies that p' is in the

...r.l l l ']. . . .

-114-

initial fl, and hence is unequal to any pointer p output by a Copy

firing in 2.

Therefore,

the firing 2 of d2 removes a token with tag e' - Tg(SJ) for some

J, where S is a Select operator.

This is as far as the identification problem will be resolved.

That is, the following will be assumed as the answer to the question of

which distinct blocking groups contain potentially-interfering firings:

The Potential-Interference Assumption: Given a firing sequence 2 and two

distinct blocking groups B2(e) and B (e'), some firing in one

group potentially interferes with some firing in the other iff:

1. e = Tg(C,n) for some n, where C is a Copy operator,

2. e' = Tg(S,J) for some J, where S is a Select operator, and

3. the jth firing of S outputs the same pointer as the nth firing

of C.

Now the strategy for sequencing all potentially-interfering firings

in distinct blocking groups can be seen: Insure that any two groups

which are assumed by the above to contain potentially-interfering firings

are mutually sequenced by the Group Sequencing Technique; i.e., all

firings in one group are sequenced after all firings in the other. This

strategy is most easily implemented by imposing the following restriction:

The Blocking Discipline: For every Select operator S, integer j > 0, and

pointer p, tokens with value TP(p,Tg(S,J)) do not appear on the

output arcs of S so long as any arcs hold tokens with value

TP(p,Tg(C,n)) where C is a Copy and n is any Integer.

-115-

The effectiveness of the discipline is readily seen in the next paragraph;

an evaluation in terms of ease of implementation and unnecessary

sequencing of firings which do not potentially interfere is in Chapter 8.

Let e and e' be any two tags such that, in firing sequence 2, B 2(e)

and B2 (e') should be mutually sequenced, according to the strategy. By

the Potential-Interference Assumption, one of the tags, say e', is

Tg(S,J) where S is a Select operator, e is Tg(C,n) where C is a Copy, and

the jth firing of S outputs the same pointer p as the nth firing of C.

Since the node to which p points is activated by the Copy firing, the

Select firing could not have output p before that firing. I.e., the

output tokens of the Copy firing, which are the first to appear with tag

Tg(C,n), appear before the output tokens of the Select firing, which are

the first with tag Tg(S,J). By the Group Sequencing Technique, then,

B (e) and B (e') will be mutually sequenced if the output tokens of the
2 S2

Select firing do not appear while there are tokens with tag Tg(C,n) on

any arcs. The former tokens appears on S's output arcs, and have value

TP(p,Tg(S,J)). The latter tokens all have value TP(p,Tg(C,n)). Therefore

B (e) and B (e') will be mutually sequenced if no tokens with value

TP(p,Tg(SJ)) appear on S's output arcs so long as any arc holds a token

with value TP(p,Tg(C,n)). This will be the case under the Blocking

Discipline.

Enforcing the Blocking Discipline requires comparing, at every Select

firing, the output produced by that firing against the values of all

pointer-valued tokens existing in the configuration. It may be discov-

ered at the jth firing of Select S that its output tokens, which have

-116-

value TP(p,Tg(S,J)), cannot be placed on S's output arcs imediately

(because a token with value TP(p,Tg(C,n)) was found). In this case, the

label S will be placed in a pool, which is separate from the configuration

and heap of the state and is associated with pointer p. S will be removed

from this pool, and tokens of value p placed on the output arcs of the

actor labelled S, after the last tokens with value TP(pTg(C,n)) disappear

from the configuration. Incorporating an optimized version of this mech-

anism into the standard data-flow interpreter yields the modified data-

flow interpreter, described in the next section. First it is briefly

demonstrated that this mechanism does insure the sequencing of every pair

of potentially-interfering firings in AlterS' (on the tagged interpreter).

It has already been argued that the potentially-interfering firings

of U and $2, which are always in the smne blocking group, are sequenced

on any data-flow interpreter. The only other potentially-interfering

firings in AlterS' are of A and F. In any firing sequence 2, these

firings are in the distinct blocking groups B2(Tg(C2,9)) and B,(Tg(S 2,l)),

respectively. Both firings input the pointer p which points to node n2

(Figure 3.2-1). That pointer is output first by the firing of C2. That

firing places tokens with value t - TP(p,Tg(C 2,l)) on C2 's output arcs,

which enables A, before S2 fires. If A fires before S2' then certainly

A fires before F. If S2 fires before A, then there will still be tokens

with value t on some arcs (A's input arc). By the Blocking Discipline,

the tokens produced by that firing of S2, which have value TP(p,Tg(S2,1)),

cannot be placed on S2'a output arcs immediately. Instead, the label S2

F
iI

-117-

will be placed in a pool associated with p, until such time as A's firing

removes the last token with value t. After that, the label S2 will be

removed from the pool, and tokens with value TP(p,Tg(S 2,1)) will be

placed on S 2's output arcs.

Therefore, even if S2 fires before A, its output tokens will not be

available to enable F until after A fires. Thus, F always fires after A.

So under the Blocking Discipline, all pairs of potentially-interfering

firings in AlterS' are sequenced; i.e., the program is determinate.

The only language-dependent feature which enters into the argument

in support of the Blocking Discipline is what may be termed

The Read-Only Condition: Every write-class operator is in one of the

m.p.d.g.'s G(K(C,1)) or G(K(C,2)) where C is a Copy operator.

Therefore, in any LBS program P which satisfies the Read-Only Condition,

every two potentially-interfering firings in distinct blocking groups

are sequenced by the Blocking Discipline. If P also satisfies the

Determinacy Condition, then every two potentially-interfering firings in

the same blocking group are sequenced. Therefore, denoting by LD the

subset of LS consisting of the programs which satisfy both Conditions,

every program in LD is determinate under the Blocking Discipline. The

development of the language LD and the modified interpreter, which are

formally defined next, has met part of the goal of the thesis; the

translation from LBV to LD given in Section 3.4 satisfies the remainder.

4

-118-

3.3 The Language LD

Section 3.3.1 precisely defines the modified interpreter and the

Read-Only Condition. Section 3.3.2 then gives a definition of blocking

group which is valid on any interpreter, and the detailed Determinacy

Condition.

3.3.1 The Modified Data-Flow Interpreter

The modified interpreter is basically just the tagged interpreter

with the Blocking Discipline imposed. Two optimizations are made, however.

These are motivated in the first sub-section below. Following that are

full definitions of the state and the state-transition rule of the

modified data-flow interpreter.

3.3.1.1 Optimizations

The only information in a tag which is needed to enforce the Blocking

Discipline is whether or not the label in the tag is the label of a Copy

operator. It is sufficient, then, that all the tagged pointers ever

appearing In a configuration be distinguishable into two classes: those

which were output by Copy firings and those which were not. Therefore,

the first optimization is to replace tagged pointers with read pointers

and write pointers:

Definition 3.3-1 A read pointer is an ordered pair (p,R) where p is a

pointer. A write pointer is an ordered pair (p,W) where p is a pointer.

-119-

An initial state of the modified interpreter has no write pointers in it,

Select firings always output read pointers, and write pointers are output

only by Copy firings.

Under the Blocking Discipline, for any two tags e = Tg(C,n), where

C is a Copy, and e' - Tg(S,J), where S is a Select, and for any firing

th astenthsequence 2, if the j firing of S outputs the same pointer as then

firing of C, then all firings in B (e') are sequenced after all firings in

B (e). By the Static/Dynamic Group Relationship, all firings in B (e')

are of operators in the m.p.d.g. G(K(S,1)). By the Read-Only Condition,

all of these firings are of read-class operators. Therefore, none of

them potentially interferes with any read-class firings which may be in

B (e). I.e., it is necessary only that the firings in B (e') be

sequenced after all the write-class firings in B'(e); sequencing them

after the read-class firings as well entails an unnecessary loss of

structure concurrency.

This can be corrected by allowing a firing of C to place read pointers

in those channels which lead only to read-class operators. Then the only

firings in B2 (e) guaranteed to have write pointers as inputs are the

write-class firings (by a refined version of the Static/Dynamic Group

Relationship, proven as Lemma 3.3-1). So the disappearance of the last

such write pointer is a signal only that all write-class firings in B (e)

have occurred. There may still be read-class firings in B (e) which have

not occurred; the Blocking Discipline will not sequence these with respect

to any of the firings in B (e').i 2

-120-

Accordingly, on the modified interpreter, the two groups of output

arcs of a Copy operator C will get slightly different tokens: Every firing

of C places write pointers (p,W) only on its number-1 output arcs, while

placing read pointers (p,R) on its number-2 output arcs. Additionally,

the Read-Only Condition is refined:

Definition 3.3-2 An LBS program P satisfies the Read-Only Condition iff

for every write-class operator d in P, d is in the m.p.d.g. G(K) only if

K - K(C,l) for some Copy operator C. A
3.3.1.2 The Modified State

A state of the modified data-flow interpreter differs from a

standard interpreter state in two regards. First is the replacement of

simple pointers in the configuration by read and write pointers:

Definition 3.3-3 A modified configuration of a data-flow program P

consists of:

1. P, plus

2. an association of

i. a non-pointer value, or

ii. a read pointer or a write pointer, or

iii. the symbol null

with each data arc of P, plus

3. an association of a symbol from the set {true, false, null) with

each control arc of P.

4.

-121-

The second distinctive feature of a modified state is a third

component, containing the pools of labels of Select operators whose output

tokens are being withheld.

Definition 3.3-4 A modified interpreter state is an ordered triple

(r,UQ) where

r is a modified configuration

U is a heap (Definition 2.2-1), and

Q: V -+2
L

p

is the pool component, which associates set of

actor labels with certain pointers.

As mentioned, only read pointers appear in an initial state of the

modified interpreter:

Definition 3.3-5 A modified state (r,U,Q) is an initial modified state

for program P iff:

1. there is an initial standard state (r',U) for P such that r is r'

with each pointer p which is associated with an arc replaced by

the read pointer (p,R), and

2. Q is empty.

A
Clearly there is a one-to-one correspondence between initial standard

states and initial modified states.

-122-

3.3.1.2 The Modified State-Transition Rule

The state-transition rule for the modified interpreter differs from

that for the standard interpreter in two relatively minor regards: (1) all

pointer inputs and outputs of a structure operator are read and write

pointers, and (2) the appearance of the output tokens of a Select firing

may be delayed, in accordance with the Blocking Discipline. In addition,

the enabling conditions for an actor to fire must be augmented to

disallow enabling a Select whose output tokens are being withheld.

Definition 3.3v6 Given a modified interpreter state (m,U,Q), any actor

d in r is enabled (to fire) iff

1. the distribution of tokens on d's input and output arcs in r matches

the enabled condition for d, according to Definition 2.1-4, and

2. if d is a Select operator, there is no pointer p such that dEQ(p).

A
The strong connection between the standard and the modified state-

transition rules is made most evident if these are treated as state-

transition functions. That is, the standard rule may be considered to

define two functions from the current state and an actor enabled in it to

the new standard state:

Definition 3.3-7 The standard state-transition functions

Standard ((r,U),d) and Standardu((rU),d)

are defined for any standard state (r,U) and any actor d enabled in r.

Their values are the configuration and heap, respectively, of the new

-123-

state derived by applying the standard state-transition rule to (mU)

with d chosen as the actor to fire. A
These functions cannot be used directly for the modified interpreter,

because they are not defined when a structure operator's input is a read

or a write pointer. This incompatibility is rectified by:

Definition 3.3-8 The function

Strip(r,d)

is defined for any modified configuration F and actor d in r to be

identical to r, except that if d is a structure operator, each input token

of d which has value (p,R) or (p,W) is replaced by a token with value p.

Now Standardr((Strip(rd),U),d) and Standard((Strip(rd),U),d) are

defined for any modifed state (r,U,Q) and actor d enabled in r.

Obeying the Blocking Discipline optimally requires a two-step state

transition. In the first step, an enabled actor d is fired: The approp-

riate tokens are removed from its input arcs, and, if it is not a Select,

the appropriate tokens are placed on its output arcs, exactly as in the

standard interpreter (except for the R and W tags in pointers). If d

labels a Select, however, then the label d is placed in the pool Q(p),

where p is the pointer which this firing would have output on the standard

interpreter. The result of applying this first step to modified state

(ru,Q) and enabled actor d will be denoted Fire((m,U,Q),d).

' = " " -r
=

ll II t.... 11 I = m]
":

1_1 J A

-124-

The second step is to release any Select output tokens which can now

be allowed to appear on arcs of the configuration. The decision on

whether to place tokens of value (p,R) on any arcs is based on the presence

or absence of any tokens with value (p,W). If there are none, then tokens

with value (p,R) are placed on all the data output arcs of the Selects

labelled by all the labels in the pool Q(p). The result of applying this

second step to any modified state (r,U,Q) will be denoted Release((r,U,Q)).

Therefore, the overall state-transition function for the modified inter-

preter is Release(Fire((r,U,Q),d)). The reason for a two-step transition

is a subtle one, and will be given after the following precise statement

of the rule:

Definition 3.3-9 The state-transition rule for the modified data-flow

interpreter is:

Given a state (r,U,Q) in a state sequence, each possible next state in the

sequence is found by:

1. Mhoose one actor d enabled to fire in r.

2. The next state is then Release(Fire((rU,Q),d)), where the

functions Fire and Release are defined below.

Let rs=Standardr((Strip(r,d),U),d) and Us=Standardu((Strip(r,d) ,U),d).

Fire((r,U,Q),d) is defined by:

1. If d is not a Copy or a Select operator, then

Fire((r,U,Q),d) w (Fs,Us,Q)

2. If d is a Copy operator, let pointer p be the value of the tokens

on d's data output arcs in rS" Let r' be r with the tokens on d's

S* S

ME

-125-

number-1 output arcs having value (p,W) and the tokens on d's

number-2 output arcs having value (p,R). Then

Fire((r,U,Q),d) - (r',usQ)

3. If d is a Select operator:

a. If the value of the tokens on d's output arcs in rS is undef, then

Fire((r,U,Q),d) = (rs,UsQ)

b. Otherwise, let pointer p be the value of the tokens on d's data

output arcs in 1S . Let r' be rS with these tokens removed, and

let Q' denote the function

! Q(r) if r p
Q'(r)

Q(p)Ufd}
if r - p

Then

Fire((r,U,Q),d) - (r',Us,Q')

Release((r,U,Q)) - (r",u,Q") where r" and ,Q" are identical to r and Q

except that:

For any pointer p such that Q(p) is non-empty and there are no tokens

with value (p,W) in r,

for all cEQ(p),

r" has tokens of value (pR) on all of c's data output arcs,

and Q"(p) is the empty set.

Under this rule, no tokens with value (p,R) appear on the output arcs of a

Select operator except as they are released during the second step of some

state transition. Since this never occurs while there are any tokens with

value (p,W), the Blocking Discipline is obeyed.

-126-

It will be noted that the decision to release tokens at the second

step of a transition is based on the configuration after the first step.

As will be seen in Section 8.2, this two-step transition is easier to

implement than a single-step transition. The only semantic significance

arises in the case that a Select firing p inputs the value (p,W) and

outputs the value (p,R). (This implies that there is a branch from the

no4e pointed to by p to itself; this is valid in the heaps defined.)

If the token removed by p is the only one with value (p,W), then the

output tokens of p will be released at the second step of the same trans-

ition. If the transition were made in one step, however, the decision

to release the tokens could be based only on the configuration before the

entire transition. Then there would be no choice but to withhold them

until the following transition. Thus the two-step transition is easier

to implement and may give rise to increased concurrency.

This completes the formal specification of the modified interpreter

embodying the Blocking Discipline. It is proven in the next four

chapters that any IS program satisfying both the Determinacy Condition

and the Read-Only Condition is determinate on the modified interpreter.

The Read-Only Condition has already been stated precisely. Now the

Determinacy Condition and the concept of blocking groups are defined for

programs run on the modified interpreter.

3.3.2 The Determinacy Condition

Blocking groups were introduced on the tagged interpreter. Each

group was associated with a tag uniquely denoting a program input arc or a

-127-

Copy or Select firing. On that interpreter, each pointer-valued token

removed by a firing had one of these tags, and the firing was in the

blocking group for that tag. But these cumbersome, if convenient,

tags have been eliminated from the modified interpreter. Therefore, the

concept of tag-bearing tokens is abstracted away from the concept of

blocking group in the following definition. At the same time, blocking

groups are sub-divided to reflect the slight difference between the

number-I and number-2 outputs of a Copy on the modified interpreter;

the utility of this will be seen shortly.

Definition 3.3-10 (Blocking groups) For any firing sequence 2, starting

in any initial state for any program P, denote by PRF(2) the set of

firings (p in 2 satisfying one of the following:

a. p is a firing of a structure operator in P, or

b. (p is a firing of a pI actor in P from a transmitted-input arc of

which (p removes a read or a write pointer.

The set of sub-blocking groups in 2 is a partition of PRF(2). The partic-

ular sub-blocking group containing any given firing (p of an actor d is

determined from the primary input arc b of d as follows:

1. If b is the ith program input arc of P, then (p is in just the sub-

blocking group denoted by SB (ID,i).

2. If b is a data arc in the number-i group of output arcs of a Copy

or Select operator d', then (p is in just SB (d',n,i), n being such

that the token removed from b by (p is the nth to appear on b in Q.

J '.

-128-

3. If b is an output arc of a pI actor d', then p is in the same sub-

blocking group(s) as the firing of d' which placed on b the token

removed by p.

Finally, the blocking groups in g are given by:

1. For all i, the blocking group denoted by B (ID,i) is just SB (IDi).

2. For any Select operator S and for all n, the blocking group denoted

by B 2(Sn) is just SBS(Ssn,1).

3. For any Copy operator C and for all n, the blocking group denoted

by B 2 (C,n) is SB2 (C,n,l)USB (C,n,2).

A
With the substitution of "tagged pointer" for "read or write pointer",

this definition gives the same set of blocking groups for a firing

sequence on the tagged interpreter as did the earlier, informal one.

Now the Determinacy Condition can be made precise:

Definition 3.3-11 A program P satisfies the Determinacy Condition iff

the following is true for every pair of distinct structure operators

d1 and d2 in P and every initial state S for P: Let 2 be any firing

th thsequence starting in S in which the ith firing of d1 and the j firing

of d2 are in a common blocking group and potentially interfere. For any

other firing sequence 2' starting in any state equal to S, the ith firing

thof d1 and the j firing of d2 appear in the sime relative order in 2'

as In2.

A
With this, the language LD is fully specified:

-129-

Definition 3.3-12 The determinate structure-as-storage data-flow language,

LD. consists of those NS programs which satisfy both the Determinacy

Condition and the Read-Only Condition.

A
A syntactic characterization of all LBS programs which satisfy the

Determinacy Condition has yet to be found. It is known that the complex-

ity of any such characterization is reduced by the fact that if firings

of two actors are in a common sub-blocking group, then the actors are in

the same m.p.d.g. This follows from the Static/Dynamic Group Relationship,

a comprehensive version of which can now be proven formally:

Definition 3.3-13 An LBS program P satisfies the Static/Dynamic Group

Relationship iff for every firing sequence 2 starting in any initial state

S for P, A and B below are true for every firing p in PRF(2). Let d be

the actor of which (p is a firing, and let v be the value removed by 0 from

d's primary input arc.

A: Exactly one of the following two statements is true of p:

1. There is exactly one integer I such that p is in SB2 (ID,i), d is

in G(K(ID,i)), and there is a token of value v on P's number-i

program input arc in S.

2. There is exactly one Copy or Select operator S in P, and exactly

one integer n and one integer I, such that (p is in SB (S,n,i),

d is in G(K(S,i)), the nth tokens to appear on S's number-i

group of output arcs in 2 have value v, and that appearance does

not follow the appearance of the token removed by V.

4.

i

-130-

B: Value v is a write pointer iff (p is in SB (Cn,l) for some Copy

operator C and some integer n>O.

Lemma 3.3-1 Every LBS program running on the modified interpreter satis-

fies the Static/Dynamic Group Relationship.

Proof: Let S be any initial modified state of any LBS program P. Proof

is by induction on the length of the firing sequences starting in S.

Induction hypothesis is that A and B are true for every firing in every

length-n firing sequence starting in S.

Basis: n - 0. Vacuously true.

Induction step: Assume the induction hypothesis is true for n - k>0, and

consider it for n - k+l.

(1) Let 2 = 0 be any length-n firing sequence starting in S. Then A

and B are true for every firing in 0 ind. hyp.

(2) If (p is not in PRF(2), then A and B are true for every firing in 2

(1)

(3) Assume (p is in PRF(2). Let d be the actor of which (p is a firing,

let b be d's primary input arc, and let v be the value of the token

removed from b by (p. Then v is a read or a write pointer

Defs. 3.3-10+3.2-1+2.2-5

(4) The token removed from b by (p either was on b in S or was placed

there as the result of a state transition of the modified inter-

preter. That token is on b in S - b is a program input arc

(3)+Defs. 3.3-5+2.2-6

(5) That token was placed on b at a transition b is a data output arc

-131-

of a Copy or Select operator, or a token of pointer value can be

placed on b at a transition of the standard interpreter

(3)+Defs. 3.3-9+3.3-7

(6) - b is a data output arc of a Copy, Select, or pI actor Def. 2.2-4

(7) b is either a program input arc or a data output arc of a Copy,

Select, or p1 operator (4)+(5)+(6)

Case I: b is the number-i program input arc

(8) (p is in just SB (ID,i), and so is not in SB (C,n,1) for any Copy

operator C and integer n Def. 3.3-10

(9) b is in K(ID,i), so b is in a channel starting at bEK(ID,i), so

d is in G(K(IDi)) Def. 3.2-1

(10) b is not an output arc of any actor Def. 2.1-1

(11) No state transition can cause a token to be placed on b, so the

token removed from b by p, which is of value v, is on b in S

(10)+Defs. 3.3-9+2.2-5+2.1-5

(12) v is a read pointer (3)+Def. 3.3-5

Case II: b is a data output arc of a Copy or Select operator S

(13) There is exactly one n such that the token removed from b by (is

th
the n to appear there In 2, and there is exactly one i such that

b is in the number-i group of output arcs of S Def. 2.1-1

(14) q is in just SB (S,n,i) (13)+Def. 3.3-10
2

(15) b is in K(S,i), so d is in G(K(S,i)) Def. 3.2-1

(16) The nth set of tokens to appear on the number-i group of output arcs

of S in 2 includes the token removed from b by p, and so those 4
tokens have value v and their appearance does not follow that of

the token removed by ;p (13)

I .

I!

-132-

(17) v is a write pointer iff S is a Copy and i-l (13)+Def. 3.3-9

(18) iff (pESB 2(C,n,1) for some Copy C and integer n (14)

Case III: b is an output arc of a pI actor d'

(19) There is a prefix &p' of e such that the token removed from b by (p

is not on b in S'8, but is on b in S-N', so(p' is a firing of d'

and, letting S' be (m,U,Q), there is a token of value v on b in

Standardr((Strip(P,d') ,U) ,d') Def. 3.3-9

(20) v' removes a token of value v which is on a transmitted-input arc

a of d' in Strip(r,d') (19)+Defs. 3.3-7+2.2-4

(21) v' removes a token of value v from a primary input arc a of d'

which is on a in r (20)+Defs. 3.2-1+3.3-8

(22) o is in the same sub-blocking group(s) as (p' (19)+Def. 3.3-10

(23) b is in every channel a is in, so d is in every distribution group

d' is in Def. 3.2-1

(24) V' is in e, so it is in PRF(e) (21)+Def. 3.3-10

(25) Either (P' is in SBe(IDi) for exactly one i, or V' is in SB 9 (Sn,i)

for exactly one Copy or Select operator S, one n, and one i

(24)+(l)+Def. 3.3-10

(26) Either (p' is in SB2 (ID,i) for exactly one i, or p' is in SB2(S,n,i)

for exactly one Copy or Select operator S, one n, and one i

(25)+Def. 3.3-10

(27) Either (is in SB (ID,i) for exactly one i, or (P is in SB2(Sni)

for exactly one Copy or Select operator S, one n, and one i(26)+(22)

(28) For any i, vESB,(ID,i) - V'ESB2(ID,i) - [d'EC(K(ID,i)) and there is

a token of value v on P's number-i program input arc in S1

dEG(K(ID,i)) (22)+(24)+(l)+(23)+(21)+Def. 3.3-13

-133-

(29) For any Copy or Select operator S, any n, and any i, (pSB (S,n,i)

th
' P'(SB (S,n,i) - d'EG(K(S,i)) and the n tokens to appear on

S's number-i output arcs in e have value v, and that appearance

does not follow the appearance of the token removed from a by p'

(22)+(24)+(l)+(21)+Def. 3.3-10

(30) The appearance of the token removed from b by p follows the

appearance of the token removed from a by p' (21)+(19)
th

(31) (pESB 2(S,n,i) - dEG(K(S,i)) and the appearance of the n set of

tokens to appear on S's number-i group of output arcs does not fol-

low the appearance of the token removed from b by cp (29)+(23)+(30)

(32) v is a write pointer iff W'(SB Q(C,n,l) for some Copy operator C

and integer n > 0 (21)+(24)+(l)+Def. 3.3-13

(32) iff (pESB 2(C,nl)
(22)

The Determinacy Condition concerns only pairs of structure operator

firings in a common blocking group. Therefore, any syntactic test for

this Condition need consider only pairs of structure operators in the same

or in closely-related m.p.d.g.'s. Specificially, any pair of such opera-

tors d1 and d2 must be in either G(K(ID,)) for some
i, G(K(S,1)) for

some Select operator S, or G(K(C,l))UG(K(C,2)) for some Copy operator C.

Table 3.1-1 may reveal that no firing of d1 potentially interferes with

any firing of d2. Otherwise, one of d1 and d2 must be in the write class.

If the Read-Only Condition is satisfied (which is easily confirmed), then

that write-class operator must be in G(K(C,l)) for some Copy operator C.

Thus both dI and d2 must be in G(K(C,l))UG(K(C,2)), and
some firings of

* them may have to be sequenced.

-134-

The only syntactic test for this sequencing which is known to be

valid covers an important special case: If none of the channels starting

at arcs in K(C,1)UK(C,2) contains an input or output arc of a gate, then

it is sufficient that there is a directed path irom d1 to d2 which is

similarly free of gate input and output arcs. Furthermore, the following,

quite general test, is believed to be correct: A well-formed data-flow

program is an acyclic interconnection of individual actors, conditional

constructs like Figure 2.1-6, and iteration constructs in the fashion of

Figure 2.1-4 [13]. In a well-formed program, it is sufficient that d

and d2 either:

1. are in separate subprograms of a conditional construct, or

2. have a directed path between them.

Finally, it is now possible to fully appreciate the decisions to

associate two m.p.d.g.'s with each Copy operator and two sub-blocking

groups with each Copy firing. Both help simplify the proof that, in a

program satisfying the Read-Only Condition, all firings of write-class

operators input write pointers; this in turn is a key to the effectiveness

of the Blocking Discipline. The proof consists of two simple steps:

1. For every write-class operator d, there is a Copy operator C such

that d is in G(K(C,1)) (Read-Only Condition).

2. Every firing of d is in SB (C,n,l) for some n, and every firing of

d inputs a write pointer (Static/Dynamic Group Relationship).

Clearly, without the separate notations for G(K(C,1)) and SB (C,n,l), the

expression of this proof would be considerably less elegant.

-135-

3.4 The Translation

The previous section has specified the data-flow language LD and

the modified data-flow interpreter. It is proven in succeeding chapters

that on the modified interpreter, any LD program is determinate, hence

functional. This partially meets the primary goal of the thesis; the

remaining requirement is satisfied in this section, by presenting an

algorithm which translates any well-behaved LBV program into an equivalent

LD program.

The translation is an improved version of the simplistic one given

earlier (Algorithm 3.2-1). That algorithm replaces each Const, Append,

and Remove operator in an LBV program with a combination of LBS operators:

a Copy C, a sequencer G, and an Assign, Update, or Delete U, arranged as

in Figure 3.2-3. A minor refinement is obviously needed to guarantee that

the resulting LBS program satisfies the Read-Only Condition: U's primary

input arc is made the only number-1 output arc of the Copy. In this way,

the single write-class firing in any blocking group is the only orie to

input a write pointer.

Every firing of U is always sequenced before every other firing in

the same blocking group. This is because, for every actor d$U of which

there is a firing in that blocking group, d is in the m.p.d.g. G(K(C,2));

i.e., its primary input arc is in a channel starting at an output arc of C,

and every such channel goes through G. There may be, however, an output

arc b of C such that all channels starting at b end at number-3 input

arcs of other Updates. None of those other Updates is in G(K(C,2)), so

none of their firings is in the same blocking group as any firing of U.

Therefore, having all those channels go through G results in an unnecessary

-136-

loss of structure concurrency. Easing this constraint may in turn lead to

G's having no output arcs, in which case G itself, along with its input

arcs, can be removed. These considerations are precisely stated in the

following.

Algorithm 3.4-1 This algorithm constructs, from any LBV program P, an

LBS program P'. It also constructs two maps: T, from the actor labels in

P to those in P', and A, from the arcs in P to those in P'.

Let Lp be the set of labels of the actors in P. Let T be any function

T: Lp -- LpU(L - LP) 3

such that:

1. If d does not label a Const, Append, or Remove, then T(d) - d.

2. Otherwise, T(d) is a triple (C,U,G) of labels not in L .

3. No label appears more than once in all of the triples in the range

of T.

Then P' is the unique LBS program, and A the unique map, satisfying the

following specifications:

For each actor in P, let d be its label. Then:

The actor is not a Const, Append, or Remove iff there is an actor of

the same type in P', labelled with T(d).

The actor is a Const/Append/Remove iff there are three actors in P'

labelled with the labels in the triple T(d) - (C,U,G), and C labels

a Copy, G a sequencer, and U an Assign/Update/Delete.

For each arc b in P:

If b is not an input or an output arc of a Const, Append, or Remove,

then b is an input (output) arc of the actor labelled d in P iff

-137-

A(b) is the same input (output) arc of the actor labelled T(d) in P'.

If b is an input or output arc of a Const, Append, or Remove labelled

d in P, let T(d) - (C,U,G). Then

1. b is the number-1 input arc of d iff A(b) is the number-1

input arc of C (Figure 3.4-1).

2. b is the number-2 (number-3) input arc of d iff A(b) is the

number-2 (number-3) input arc of U.

3. b is a control output arc of d iff A(b) is a control output

arc of U.

4a. If b is a data output arc of d and every channel in P starting

at b ends at a number-3 input arc of an Append, then A(b) is a

number-2 output arc of C.

4b. b is a data output arc of d and not every channel in P starting

at b ends at a number-3 input arc of an Append iff A(b) is an

output arc of G.

Finally, for each Const, Append, or Remove actor d in P, let T(d) be

(C,U,G). Then there are three arcs in P' interconnecting C, U, and G as

in Figure 3.4-1 (these arcs are not in the map A). The input arc of U is

the only arc in the number-i group of output arcs of C. (If sequencer G

has no output arcs, it may be removed, along with its input arcs.) A
Clearly A as defined is a similarity mapping from P to P.

Figure 3.4-2 depicts the LBS program AlterS2', which is the result of

translating the L v program AlterV2 (Figure 2.3-7a). Note that the only

difference between AlterS2' and AlterS2 (Figure 2.3-7b) is the insertion

of a sequencer which forces S3 to fire after U1 .

-138-

-Cop

/2

Const//

-Cop

/2

/

Operator Substitutions in Translating from T.Vto LD
Figure 3.4-1

- - - - - - - - -

-139-

S* 2

-140-

The proof that this algorithm translates any well-behaved LBV program

P into an equivalent program P' is in three steps:

1. P' satisfies the Read-Only and Determinacy Conditions (i.e., P'ELD)•

2. Every L program is functional.

3. If P is well-behaved and P' is functional, then P' is equivalent

to P.

The first and third steps.are presented below. The proof of the second

step occupies the next four chapters.

Theorem 3.4-1 Let P' be any LS program produced by Algorithm 3.4-1 as

the translation of some LBV program P. Then p, satisfies the Read-Only

Condition and the Determinacy Condition.

Proof:

(1) Let U be any write-class operator in P'

(2) U is not in P (1)+Defs. 3.1-2+2.2-3

(3) U is introduced into P' by Algorithm 3.4-1 (1)+(2)

(4) There is a unique Copy C in P' connected to U as in Figure 3.4-1

(1)+(3)+Alg. 3.4-1

(5) The primary input arc b of U is in the number-1 group of output

arcs of C (4)+Alg. 3.4-1+Def. 3.2-1

(6) There is exactly one channel containing b which starts at a program

input arc of P' or a data output arc of a Select or Copy operator,

and that starts at a number-1 output arc of C (5)+Def. 3.2-1

(7) The only m.p.d.g. containing U is G(K(C,1)) (5)+(6)+Def. 3.2-1

(8) P' satisfies the Read-Only Condition (7)+Def. 3.3-2

-141-

(9) Let 2 be any firing sequence starting in any initial state S for P'

(10) Let d1 and d2 be any two structure operators in P' such that two

distinct firings (p of d1 and (2 of d2 are both in the same

blocking group in 2 and they potentially interfere

(11) One of d1 and d2 is write-class; let it be d1 (l0)+Table 3.1-1

(12) The primary input arc of d1 is the only number-1 output arc of

some Copy operator C (11)+(l)+(4)+(5)

(13) The nth firing of any non-gate actor d removes from each input arc

of d the nth token to appear there, and places on each output arc

of d the n t h token to appear there Def. 2.1-5

(14) Let n be such that p1 is the n
h firing of d1 in 2. Then (1

removes the nth token to appear on its primary input arc (13)

(15) 1l 2B,(C,n), and no other firing of d1 is in B2 (C,n)

(12)+(14)+Def. 3.3-10

(16) p2 EB 2(Cn) (15)+(10)

(17) (2 is in SB2 (C,n,1) or SB2 (C,n,2) (16)+Def. 3.3-10

(18) d2 is in G(K(C,l)) or G(K(C,2)) (17)+Lemma 3.3-1+Def. 3.3-13

(19) The only channel starting at a number-1 output arc of C contains

just the number-1 input arc of d1 (12)+Alg. 3.4-1+Def. 3.2-1

(20) d is the only actor in G(K(C,1)) (19)+Def. 3.2-1

(21) d2 is in G(K(C,2)) (18)+(20)+(10)

(22) There is a label R of an actor in P and a label G of a sequencer

in P' such that T(R) - (C,dlG) (lI)+(12)+Alg. 3.4-1

(23) The primary input arc of G is an output arc of C, and its other

input arc is the output arc of d1 (22)+Fig. 3.4-1

(24) The nt h firing of G, (PG removes the nth tokens to appear on both

-142-

of its input arcs (13)

(25) pG is in B2 (C,n), and no other firing of G is in B,(C,n)

(23)+(24)+Def. 3.3-10

(26) C follows in 2 (14)+(24)+(13)

Next prove the following, by induction on the length of 2:

A: Let d be any actor such that dEG(K(C,2)) but d*G. Then any firing

of d which is in B (C,n) follows PG in 2.

Basis: I21 - 0. Vacuously true.

Induction step: Assume A is true for every firing sequence of length n,

and consider O4 of length n+l. If p is not in B (C,n), then A is true

for e by induction hypothesis. Therefore, assume

(27) (pEB 2 (C,n) and is a firing of dEG(K(C,2))

(28) There is at least one channel starting at an arc in the number-2

group of output arcs of C and containing the primary input arc

of d (27)+Def. 3.2-1

(29) Since the number-3 input arc of an Update is not its primary input

arc, that channel must start at G's transmitted-input arc

(28)+Def. 3.2-1+Alg. 3.4-1

(30) Since G is a pl actor, that channel also includes an output arc

of G (29)+Def. 3.2-1

(31) Since d*G, no primary input arc of d is an output arc of C

(29)+Def. 3.2-1

(32) The primary input arc b of d from which p removes a token is an

output are of a pl actor d', and that token was placed on b by a

firing V' of d' also in 3o(C,n) (31)+Def. 3.3-10

(33) # follows (32)+Def. 2.1-5-

// 1~
-143-

There are two cases for d': either d' - G or d' # G.

Case I: d' - G.

(34) VG is the only firing of G - d' in Bg(C,n) (25)

(35) G 9 ' (32)+(34)

(36) 9 follows (PG (33)+(35)

Case II: d' * G

(37) d' G(K(C,2)) - there is no channel starting in the number-2 group of

output arcs of C including a primary input arc of d' Def. 3.2-1

(38) =* there is no channel starting in the number-2 group of output arcs

of C which includes b (32)+Def. 3.2-1

(39) d'EG(K(C,2)) (38)+(27)

(40) (p' is in e (33)

(41) 9p' follows PG (39)+(40)+ind. hyp.

(42) (p follows (41)+(33)

(43) A for &p (36)+(42)

(44) d2EG(K(C,2)) and d2#G (21)+(10)

(45) Any firing of d2 which is in B (C,n) follows (p (44)+A+(26)

(46) V2 follows I in 2 (10)+(16)+(45)

(47) If J is such that 02 is the j th firing of d2, then for any other

firing sequence starting in any initial state for P, the
jth

firing of d2 follows the n
th firing of d1 (9)+(14)+(46)+(45)

(48) P' satisfies the Determinacy Condition (9)+(47)+Def. 3.3-11

This completes the first step in the proof that Algorithm 3.4-1

translates an LB program P into an equivalent program P': P' is in L.

The third step is presented next: If P is well-behaved and P' is, Ii

I

-144-

functional, then P' is equivalent to P. P' is equivalent to P iff for

every initial state S for P and halted firing sequence 2 starting in S,

for every initial state S' for ' simulating S and halted firing sequence

2' starting in S', the final state '-2' simulates S'2.

Since P is an LBV program, it is functional; i.e., all halted firing

sequences starting in S result in equal firing states. If P' is also

functional, then all halted firing sequences starting in S' result in

equal final states. The "simulates" relation is invariant under substi-

tution of equal states. Therefore, it is only necessary to find one

halted firing sequence 2 starting in S and one halted sequence 2' starting

in S' such that S'"2' simulates S'2. The following algorithm constructs

such an 2' from any 2.

Algorithm 3.4-2 Let P be any LV program, and let T and P' be any map and

corresponding LS program produced from P by Algorithm 3.4-1. Given any

firing sequence 2 starting in any initial state for P, and any initial

state S' for P', construct a firing sequence R(2) recursively as follows:

Basis: R() - X.

Induction step: Let Qp be any firing sequence starting in any initial

state for P, where the last firing p is of actor d in P. Then R(P) is

given by:

If d does not label a Const, Append, or Remove, then

R(Qp) - R(2)V', where (p' is the firing which is the label T(d).

Otherwise, R(2P) - R(2)(C(P&G , where

T(d) - (C,U,G)

(PC (C,(p,n)) where (o * (d,(p,n)), cpU U, and (G G.

Now

-145-

It should be noted that, technically, the definition of "simulates"

(Definition 2.4-7) cannot be applied to a modified state. This is because

the definition of the "Hatch" relation between the conditions of arcs in

states (Definition 2.4-2) assumes that each arc has either no token, a

token with a non-pointer value, or a token whose value is a simple pointer.

In a modified state, however, each token's value is either a non-pointer,

or (p,R) or (p,W) where p is a pointer. The association of the innocuous

"R" or "" tags with each pointer in a configuration should not disqualify

an otherwise-equivalent program. I.e., it should not be cause for concern

if the definition of "simulates" ignores the presence or absence of such

tags. This is most easily accomplished by revamping the definition of

" atch" (matching conditions for arcs in two modified interpreter states

are also included here, for completeness):

Definition 3.4-1 Let S1 and S2 be a standard and a modified or two

modified interpreter states. Let r1 and r2 be their respective config-

uration components, and let U1 = (N1 ,l1,SM1) and U2 - (N2,x 2 ,SM2) be

their respective heap components. Let b1 and b2 each be an arc from the

program of which r 1 and r 2, respectively, is a configuration. Then for

any one-to-one mapping I: N1 -+ N2 , the condition of b in S matches under

I the condition of b in S1, written

Match((b 2 ,S2), I, (b 1 ,S1)

iff one of the following is true:

1. There is no token on b1 in 1 and no token on b2 in F2.

2. There are tokens with equal non-pointer values on b1 in r and on

b in r2.

2 22

-146-

3. a. For i=1,2, there is a token with value pi9 (PiOR), or (piW),

where p1 is a pointer, on bi in ri ,

b. if both tokens' values are tagged pointers, the tags are the

same, and

c. U2 .fn 2 (p 2) = U1 .flI(Pl)

Theorem 3.4-2 Let P be any well-behaved LBV program, and let P, be its

translation via Algorithm 3.4-1. Let S be any initial standard state for

P, and let S' be any initial modified state for P' which simulates S.

Then for any halted firing sequence 2 starting in S:

1. R(Q) is a halted firing sequence starting in S', and

2. S''R(R) simulates S'2.

Proof: The proof of this is tedious and has been relegated to Appendix B.

The only non-straightforward points in it are listed below:

1. Whenever a Const, Append, or Remove d is enabled in P, the corres-

ponding Copy C is enabled (Figure 3.4-1). Firing that enables the

corresponding Assign, Update, or Delete U. Firing U then enables

the sequencer G.

2. There is only one write pointer output per Copy firing, and that

is input by the immediately-following firing. Therefore, whenever

a Select fires, there are no write pointers in the configuration,

so its output tokens appear with no delay.

Beyond this, the proof is simply a case-by-case demonstration that equal

inputs (identical non-pointer values or pointers to equal components)

to two firings of an operator produce equal results.
Ax

e-147-

Theorem 3.4-3 For any well-behaved program P, let P' be the LBS

program produced from P by Algorithm 3.4-1. If every LD program is

functional, then F' is equivalent to P.

Proof: Let A be the map from arcs in P to arcs in Pt generated in the

production of P'.

(1) A is a similarity mapping from P to P' Alg. 3.4-1+Def. 2.4-6

Let S be any initial standard state for P, and let 2 be any halted firing

sequence starting in S. Let S' be any initial modified state for P'

which simulates S, and let 2' be any halted firing sequence starting in S'.

(2) R(Q) is a halted firing sequence starting in S' and S''R(2)

simulates S'2 Thm. 3.4-2

(3) There is a mapping I1 such that, for each arc b in P,

Match((A(b),S'R(2)), Il, (b,S.2)) (2)+Def. 2.4-7

(4) P' is in LD Thin. 3.4-1

(5) Every program in LD is functional = P' is functional (4)

(6) S'2' equals S' .R(2) (2)+Def. 2.4-4

(7) = there is a mapping 12 such that, for each arc c in P',

Hatch((c,S'.Q'), 12. (cS''R(Q))) Def. 2.4-3

(8) = for each arc b in P,

Match((A(b), S'.Q'), 12 -I, (b,S'2)) (3)+Thm. 3.4-1

(9) - S t - 2' simulates S19 (1)+Def. 2.4-7

Q.E.D.

The primary goal of this thesis is to develop a language LD and an

interpreter for it, together with a translation from LBV to LD which

produces equivalent programs having maximal structure concurrency.

-148-

Section 3.3 has presented the language LD and the modified data-flow

interpreter for it. It has been argued in Section 3.2 that every LD

program on the modified interpreter is determinate, hence functional.

Section 3.4 contains a translation algorithm from LBV to LD which, if

indeed every LD program is functional, produces equivalent programs.

The proof that every LD program is functional on the modified interpreter

fills Chapters 4, 5, 6, and 7. Chapter 8 includes a judgment of how well

the goal of maximal concurrency has been met.

'J1

-149-

Chapter 4

The Entry-Execution Model

This chapter introduces the entry-execution model of concurrent

computation. The purpose of developing this model is to make the results

of the thesis as widely applicable as possible. The major result is that

a language L with Structure-as-Storage operations can be made a determinate

language by modi~fyi g it altording to a certain scheme. The entry-

execution model of L focuses on just those aspects of L pertinent to this

statement: whether it is determinate and whether it includes the Structure-

as-Storage operations, in either a simple or a modified form. Details of

L not germane to these issues are abstracted away.

Specifically, the results of this thesis can be applied to any

language L and interpreter I on which L runs by the following procedure:

1. Modify I so that the outputs of Select operators are withheld in

accordance with the Blocking Discipline. Restrict L to those

programs in it which satisfy properties analogous to the Determinacy

Condition and the Read-Only Condition. Call the modified interpreter

V' and the restricted language L'. (This step has already been

performed for the data-flow language LBS.)

2. Construct an entry-execution model E of L' running on 1'. The

general form of such a model is defined below in Section 4.2; as an

example, an algorithm for constructing a model of any data-flow

language and interpreter is given in Section 4.3.

-ISO0-

3. Check that F satis(t (en the contt'aintai defimng d Struc ture-as-

Storage (S-S) model, given in Section 5.1. F is an S-S model it

1.' contains operations having the same order-dependent behavior on

I1 as the structure operations in L.BS; this is proven in Section '1. 1.

4. Check that E satisfies the Determinacy Axiomm, given) In Sect ion 6.2.

These are simple properties of the control portion of a program

which atre used to prove that the program is determinate. Most of

them artre used in existing proofs of determinacy for languages

without structure operations, and ao are well understood. One axiom

asserts the key requirement of freedom from conflict between struc-

ture operat ions; E should satisfy this axiom if the modifications

In Step I were made correctly. Then the principal theorem applies

to E: An S-S model which satisfies the Determinacy Conditions i a

determinate model (defined in Section 6.1).

S. Prove from the construction in step 2 that E is a determinate model

only if L' running on I' in a functional language.

The final three steps are applied in Chapter 7 to the language LBS.

The general form of an entry-execution model is given in Section 4.2

below; this is prefaced by a description of existing models of concurrent

computation which shows their inappropriateness for the current research.

Section 4.3 then provides an algorithm to construct an entry-execution

model of any data-flow language and interpreter.

4.1 Historical Perspective

Several models of concurrent computation have been developed in the

past ten years. Each of these different models was designed to aid in

-151-

the study of particular properties of parallel programs, usually

determinacy and equivalence. Certain details about a parallel program

have no bearing on its determinacy or equivalence, and so are treated

abstractly in the models. These models are very specific, however, about

those other details which have a strong impact on the issues of interest.

The basic elements common to all models for which determinacy is a meaning-

ful concept are described briefly below. Each of these elements is

characterized as to the degree of abstraction with which it is typically

treated, to show that the development of the entry-execution model has been

guided by the same principles as this previous work.

These models of concurrent computation are based on five concepts,

which are described below, both in general and by reference to the data-

flow model presented in Chapter 2.

1. A program contains (among other things) a set of instructions

(actors). Each instruction specifies (among other things) an

operation.

2. Computing by a program involves a set of executions (firings).

An execution is the application of some instruction's operation

to a set of input values to produce a set of output values. It is

characteristic of concurrent computation that the relative order in

which these executions occur is not totally fixed by the program.

Instead, the program determines a set of possible relative orders

or computations (firing sequences). A computation is a sequence of

events, each of which is typically either the initiation or the

termination of some execution; this allows modeling not only

different initiation orders, but also multiple executions in

progress (initiated but not terminated) concurrently.

3. The instructions in a program are interconnected by a (local) memory

structure. This consists of a set of meor elements (arcs). Each

instruction is assigned some subset of these elements as its inputs

and another subset as Its outputs. Each time an instruction

executes, input values are read from its input memory elements, and

results are written into its output elements.

It is in this memory structure that the greatest diversity

among models appears. Each element may store just one value, with

either destructive (data flow) or non-destructive 124,281 readout.

Alternatively, each element may be a first-in, first-out queue

12,23,341. The interconnection of instructions and memory elements

may be arbitrary or may be restricted, as in the case of data flow

(in which each element is an input of at most one instruction and

an output of at most one instruction).

4. Every program has a control portion. There is a set of states

defined over the control portion, and a universal, non-deterministic

state-transition rule. This rule defines a set of enabled events

(initiations and terminations) for each possible state of the

control. It also describes the new state resulting from each

IF possible choice of which enabled event occurs next. The manner In

which a state set and transition rule generates a set of possible

computations is the same in all models, and is exemplifited by data

flow (Definition 2.1-5). The major difference among 'the models is

in the representation of the state. The state may be embedded in

-153-

the memory structure, either in the amount of data in input queues

(computation graphs (23] or data flow), in auxiliary control infor-

mation stored in each element (program graphs [301), in a combination

of these (graph programs [2]), or in the values of stored data

(computational schemata [28]). Alternatively, there may be a

separate control structure, consisting of a set of counters (flow

graph schemata [34] or parallel flowcharts [24]) or precedence graphs

[18,28], or the state set can be completely arbitrary (parallel

program schemata [24]).

5. There is a definition of a determinate program. The general notion

may be stated as: Given a program and initial local memory content,

every memory element has the same sequence of values written into it

during all possible computations. Clearly, the exact definition

depends on the particular memory structure unique to each model.

Out of the body of research employing these models have come several

general facts about determinacy in parallel programs. One of the most

significant of these is that determinacy is not affected by the particular

choice of operations performed by the instructions. The only requirement

is that all operations satisfy the following two properties:

a. Determinism - The outputs of an execution of the operation depend

only on the inputs to that execution.

b. Finite delay - Once initiated, an execution of the operation must

terminate within a finite time.

It is significant that all of these models assume that any operation

used in a program satisfies these properties. As a consequence, most

models choose to abstract away the particulars of operations by defining

-154-

parallel schemata. A schema is a program with all instructions replaced

by operators. An operator differs from an instruction in that it has an

abstract operation symbol in place of a specific operation. That is,

where an instruction in a program has an operation like addition, the

corresponding operator in a schema might have the symbol 'f'. Study of

schemata has led to the discovery of sufficient conditions for their

determinacy (the Determinate Schema Axioms, presented in Section 6.2).

If a schema is determinate, then any program obtained by replacing each

abstract operation symbol with a specific operation is also determinate

(assuming that the specific operation is deterministic and has finite

delay).

This has been the main thrust of abstraction in the past: going from

concrete programs to schemata, which have concrete memory and control

structures but abstract operations. With one exception (noted shortly),

there has never been an attempt to instead abstract away both the memory

and control portions. It has apparently always been felt that it is more

challenging to verify the Determinate Schema Axioms for a particular

concrete memory/control structure than to verify determinism and finite

delay for a particular operation. Therefore, most of the previous models

were directed toward devising a general form for memory and control which

(1) Is "Practical", for programing and/or implementation, and (2) makes

it easy to identify the schemata in that form vhich satisfy the Determinate

Schema Axioms.

This thesis presents a different challenge in guaranteeing determin-

acy. It is assumed that programs will be written using any schema form

which has been (or will be) developed. This means that the problem of

-155-

identifying which programs' memory and control structures satisfy the

Determinate Schema Axioms is not of interest. Rather, the concern here is

for defining useful non-deterministic operations in such a way that it is

still easy to identify determinate programs. This change in focus calls

for a radically-different model of parallel programs, one with abstract

memory and control, but concrete operations. What is unusual about this

new entry-execution model is not the principle of abstraction, but the

particular choice of aspects to be abstracted.

An increased emphasis on the definitions of operations is evident

in the efforts of [3], [22], and [27] to specify the semantics of a

schema language without using an interpreter. These researches defined

an operator as a function from the vector of sequences of tokens appearing

on its input arcs to a vector of sequences of tokens appearing on its

output arcs (necessary to handle the gates, which do not always consume

input tokens and produce output tokens). This new tool is not relevant

to the problem under consideration here, however, because of the following

two characteristics:

1. The concept was developed in an attempt to specify the (possibly-

partial) function from program inputs to outputs realized by a

program which is known to be functional and well-behaved.

2. It allowed defining operators for which the outputs of an execution

depend on the sequence of past inputs to that operator (rather than

on just the current inputs).

But the concern here is for deciding whether or not a program is function

functional, given that it contains operators the outputs of which may

depend on the sequence of past inputs to other operators as well.

-156-

Closest in spirit to the approach taken here is that of Greif in her

thesis on the semantics of communicating parallel processes [19]; the

similarities extend to the definition of a Structure-as-Storage model, and

so a detailed comparison has been deferred to the end of Section 5.1. Her

work was based on the "actor model", the only well-known effort to abstract

away control and local-memory structures. Actors also, however, abstract

away the concept of a program as a fixed set of instructions, which was

undesirable for the present purposes.

4.2 Definition

An entry-execution model differs from a schema model in two major

regards: (1) The abstract programs bear no resemblance to real programs.

(2) Computations are sequences of events other than initiations and termin-

ations of executions. These differences will be motivated here during the

top-down definition of the general form of an entry-execution model.

The top level establishes the undefined concepts which will be needed:

Definition 4.2-1 An entry-execution model of a language is a five-tuple

(V, L, A, In, E)

where

V is an atomic value domain

L is a set of labels

A is a domain of primitive actions

In is a function assigning to each action in A an integer,

its input arity

E is a set of expansions, defined below

Ak

-157-

The set V of values is arbitrary, but must be made explicit in order for

the notion of determinacy to make sense. The model also retains the idea

that a program contains instructions which have actions (e.g., Select,

add, merge) associated with them. Each instruction in a program must

be uniquely identified by a label from L. Each action associated with

any instruction must be in the set A. Furthermore, an execution of

instruction d must have a number of inputs equal to the input arity of

the action associated with d. L is the only one of these entities

which is abstract; the determinacy of a program does not depend on the

particular labels on the instructions. It does however depend on the

exact definition of at least some actions (the structure operations),

as well as on their input arities. It is obvious how V, L, A, and In

would be chosen in modeling a data-flow language.

4.2.1 The Abstract Programs

When the specific operations are abstracted away from a program,

the result is a schema. When the specific memory and control structures

are abstracted away from a program, the result is an expansion:

Definition 4.2-2 Given a model (V L, A, In, E), each expansion nE

is an ordered pair (Int,J) where

Int is an interpretation, an ordered triple (St, /,IE) in which

St c L,

I: St -+A, and

IE is a set of executions (defined below),[4

-158-

and J is a set of jobs for Int, also defined below.

A

An expansion retains none of the structure of a program that a schema

does. This is the first distinctive feature of the entry-execution model.

An expansion is as useful an abstraction as a schema is, however, as the

following argues.

A parallel program P determines a set of jobs. "Job" here connotes

the set of possible computations by P on a distinct program input. Thus

each possible input to P gives rise (in principle) to a different job.

In a schema model, each possible distinct input to P corresponds to a

different equivalence class of initial states for the memory and control

portion of P. Whenever desired, this compact initial-state representation

can be expanded into a job, by generating all possible sequences of

applications of the state-transition rule starting in one of those

initial states.

In the entry-execution model, there is no concept of state, and

hence no state-transition rule to apply. Jobs are still of interest,

because ultimately determinacy is a property of jobs. But their derivation

through specific state transitions is not of interest. Therefore, the

details of memory and control are abstracted away from a program, leaving:

1. a set of instruction labels (St),

2. an association of actions with these labels (I),

3. a distinguished set of executions (IE) whose outputs will be used

to model the program's inputs, and

4. the set of jobs resulting from expanding each equivalence class of

initial states for the program (J).

-159-

This abstract program will be known here as an expansion. If an expansion

is determinate, then any program, with any explicit memory and control

structure, which yields that expansion is also determinate. This is the

same spirit in which the determinacy of programs is implied by the

determinacy of schemas.

The next definition clarifies the point that a job is not an

arbitrary set of computations.

Definition 4.2-3 Given an interpretation Int, a job for Int is a set

of computations for Int (defined later.)

Qualifying a computation as being "for Int", where Int - (St, /,IE),

essentially just specifies that

1. all executions are of instructions having labels in St, and

2. each execution of an instruction labelled d has the proper number

of inputs for the action 1(d).

The conceptual significance of a job is that it represents all

computations by a program on "the same input". Any precise character-

ization of a job then necessarily makes reference to the set of input

values of a program. In a standard schema model, these are just the

contents of a designated subset of locations in the memory structure of

an initial state. In the entry-execution model, however, there is no

memory structure. Instead, these program inputs will be modeled as the

outputs of certain executions: those in the designated set IE in the

interpretation associated with the program. These executions will in

-160-

general be dummies, i.e., not "real" executions of instructions in the

program. This artifice is best illustrated by example, as in the entry-

execution model of a data-flow language (cf. Definition 4.3-1 below).

The determination of which sets of program input values constitute

"the same input" to a program is highly language-dependent; consequently,

including any further constraints here in the general definition of a job

may render interesting languages incapable of being modeled. The argument

for this claim is deferred until after the completion of the definition

of a model.

4.2.2 The Computations

The second distinctive feature of the entry-execution model is its

definition of a computation. The most important criterion in designing

this is that there be a concise definition of determinacy for a set of

computations. A crude expression of a suitable notion has already been

given, in terms of the schema model of data flow, as the five Determinacy

Assertions (Section 3.1.2). A principal source of clumsiness in those

assertions was the frequent occurrence of the phrase "the jth firing of

actor d"; consequently, the entry-execution model offers a more concise

denotation:

Definition 4.2-4 Given a model (V, L, A, In, E), an execution is an

ordered pair consisting of a label dEL and a positive integer k, written

Ex(d,k)

In an entry-execution model of a data-flow firing sequence, Ex(d,k)

denotes the kth firing of the actor labelled d.

' __ _______,_.

-161-

The Determinacy Assertions also make reference to the value of a

particular input to a particular firing, and to the direct transfer of

that input from an output of some other firing. Appropriately, then, a

computation in the entry-execution model is a sequence of entries, each

representing the transfer of a single atomic value from an output of a

source execution to an input of a destination execution:

Definition 4.2-5 Given a model (V, L, A, In, E), a source is an ordered

pair consisting of an execution e and a positive integer i, written

Src(e,i)

A destination is an ordered pair consisting of an execution e and

a positive integer J, written

Dst(e,j)

A transfer is an ordered pair (s,d), where s is a source and d is

a destination.

An entry is an ordered pair consisting of a transfer and an atomic

value from V. If f is an entry, then T(f) denotes the transfer component

of f and V(f) denotes the value of f. Letting the transfer of f be

(Src(el,i), Dst(e2,j))

f is an output entry of execution el, and is the jth input entry of

execution e2 . The target execution of f is e 2 .

The appearance of an entry with transfer

(Src(Ex(dl,k 1) ,i), Dst(Ex(d 2 ,k 2) ,J))

and value v in a computation modelling a firing sequence Q means that:

th
The value of the number-j input to the k2 firing of actor d in 2 was

th
v, and was produced as the number-i output of the k1 firing of d1

-162-

The set of entries constituting a computation must satisfy certain obvious

constraints in order to be a reasonable model:

Definition 4.2-6 Given a model (V, L, A, In, E) and an interpretation

Int - (St, /,IE) in some expansion in E, a computation for Int is a

(possibly infinite) sequence of entries

=W flu f2' "

satisfying the following:

1. Let e - Ex(d,k) be any execution of which there is either an input

entry or an output entry in co. Then dEST, and there are at most

In(I(d)) input entries to e in w. If co contains exactly In(/(d))

input entries of e, then e is initiated in c (with respect to Int),

and the last such input entry in &) is the initiating entry of e.

2. The destinations of the transfers of the entries in co are all

distinct (i.e., for each J, an execution has at most one number-j

input entry in co).

3. For any source s, denote by 0E (s) the set of entries in w whose
CA)

transfers have source s. Then all entries in OE (s) have the same

value. This common value is the value of source s (in 0).

Of the five Determinacy Assertions, only the third and fifth concern

pointers or structure operations; thus the first, second, and fourth

together define determinacy of a program having no structure operators.

The following statement, which is as strong as those three assertions,

illustrates the conciseness of expression possible in the entry-execution

model:

-163-

Given an expansion (Int,J), for any JEJ, every halted computation

in J contains exactly the same set of entries.

This is the definition of a determinate expansion in the absence of

structure operators (the complete definition may be found in Section 6.1).

It is claimed, without proof, that any data-flow program P whose expansion

is determinate must satisfy the five Determinacy Assertions; it is proven

(in Chapter 7) that P is at least functional. The ease of defining

determinacy illustrates the benefits of choosing entries as the events in

computations, which choice was the second major departure from the schema-

model norm.

It has been claimed that an exact description of the set of compu-

tations by a single program on a single input (i.e., of a job) is highly

language-dependent. This is easily seen by comparing the appropriate

descriptions for data-flow languages with and without structure operators.

In an entry-execution model of any data-flow language (as constructed in

Section 4.3), the value of the token on each program input arc is repre-

sented as the value of a distinctive, fixed entry; call the entry repre-

senting the number-i program input the "number-i program input entry".

In the model of a data-flow language without structure operators (such

as LB), a job is easily characterized: Two program inputs are equal iff

they are identical; hence, for any i, the number-i program input entries

in all computations in a job must have the same value. In the model of a

language with structure operators, however, this constraint applies only

to those program input entries whose values are not pointers. The values

of pointer-valued program input entries are arbitrary, as shown-next.

Letting p be any pointer which Is onl a program Input are inl some

initial state, (or any other pointer q there Is anl equal Initial state

in which that arc has q oni it. Thosv two in~ititat states represent thei

same program input. The not of all computations by that program on that

input to a job .1. Therefore, there will be in J some compuitations in

which the corre.sponding program Input entry has value 1), and others ill

which that entry lies value, ti. Since this statement is true for any

pointers p anti q, overy pointeor appears as the valiic of thatt program input

entry in some computation ill .1. Thtus it is seen that any at tempt to

develop a nion-trivial. characteriiAt ion of "the same Input" which Is val id

in the models o(all interesting languages is Ill-advised.

This completes the presentation of the general form of ant entry-

execution modol of a programming language. rhis model was motivated byv

the desire to make the resutlts of the thesis applicable to as wide a

rangeo of languages as pofssiblle. To tise endl. the memory andi control

portitons are abstract ed away from a program, to focus onl the dofini tions

of the opertionst. Thep resulting abstract program looks radically

different from a schema, in waye which have beon pointed out.

The merits of this model canl be judged only on the, basis of (1) how

easily resultst are ntated in its terms, and (2) how easily they are then

applied to different lanigutage. Evidence onl the first of these Issues may

be found In Chapters 5 and 6. asid on the second in Chapter 7. The

remaining section of this chapter constructs a modlel. of data-flow

languages. The current section now concludes with some usefutl properties

of entry-execution models andi an algorithm for producing pictorial

representat ions of computation.

____________________ ___

-165-

4.2.3 Properties

The following defines two properties which will be assumed to hold

for all models of interest.

Definition 4.2-7 A computation w is causal (with respect to interpretation

Int) iff the following is true for any execution e: For any prefix af of

in which f is an output entry of e, e is initiated in a (wrt Int).

A computation w in a job J is halted in J iff it is a proper prefix

of no other computation in J. A job J has the Prefix Property iff for

every (A) in J, every prefix of (A) is in J.

Causality, while not strictly essential, greatly simplifies the proofs

developed later; it is proven shortly that all computations in a model of

data flow are causal. Similarly, a job could include only halted compu-

tations. But the Prefix Property allows writing, for example, "if u) is

in J, then so is wf," instead of "if w is a prefix of some computation in

J, then so is wf." For convenience, then, both causality and the Prefix

Property are assumed in the general proof of determinacy in Chapter 6.

Finally, the following notational conventions will be observed:

1. Roman letters (f, g, h, k) will be used to denote single entries,

while Greek letters (w, a, p, ...) will be used to denote sequences

of zero or more entries.

2. Given a computation w, Ent (e,j) denotes that unique entry in w

whose transfer has destination Dst(e,j). When o is understood, the

subscript may be omitted.

3. Given an interpretation (St,I,IE), execution Ex(d,k) for any dESt

and any k is an execution of the action 1(d).

-166-

4.2.4 Pictorial Representation

The relationships among the entries and executions of a computation

can be depicted as a directed graph. The nodes of the graph represent

executions and the branches represent entries. The branches terminating

on a node n represent the input entries of the execution e represented

by n, and the branches leaving n represent els output entries.

Algorithm 4.2-1 To construct an entry-execution graph for computation W~:

1. Initialize an entry counter EC to 1.

2. For each entry f in wi in order: Let T(f) - (Src(e19i),Dst(e 2 9j))

and let VMf - v.

a) If there is no node labelled with e 1 (or e 2) in the graph yet,

add an open figure (e.g. a circle) with e I (or e 2) written

inside it.

b) Draw a directed branch from the node labelled with e 1 to the

node labelled with e 2. Write i beside the tail of this branch

and j beside its head.

c) Label the branch (distinctively) with atomic value v and with

EC. Increment EC by 1.

-167-

4.3 An Entry-Execution Model of Data-Flow Languages

This section first presents an algorithm for deriving the entity

EE(L,I) from any data-flow language L and interpreter I. It then proves

some important properties of EE(L,I), including that it is indeed an

entry-execution model. This serves two purposes: (1) it is a specific

example of the construction of a model, and (2) it is the first step in

applying the results of the thesis to the data-flow language LD on the

modified interpreter M. The latter process was outlined at the start of

this chapter. The algorithm presented here figures prominently in several

steps of the proof: It is used in Chapter 7 to prove that EE(LD,M) is a

Structure-as-Storage model:satisfying the Determinacy Axioms. The result

of Chapter 6 then applies,-saying that every expansion in EE(LD,M) is

determinate. Finally, the algorithm is used to prove, from this result,

that every program in LD is functional when run on M.

4.3.1 The Construction of EE(L,I)

The steps in constructing EE(L,I) are first presented informally:

1. For each initial state S of a program P, and firing sequence 2

starting in S, construct the canonical computation I(S,2), using

Algorithm 4.3-1 belQw. In r(S,2), there is an entry for each token

appearing on an arc in P in the course of 2, and the entries are

arranged in the order of the removal of their corresponding tokens.

2. Construct J as a constrained set of permutations of n(S,2).
S.Q

3 contains all halted computations which model, in a sense
S,2

described later, the firing sequence 2.

3. Construct the set consisting of all prefixes of all computations in

JS,2" Every computation in this set models 2, and the set satisfies

k , - -

-168-

the Prefix Property.

4. Repeat steps 1, 2, and 3 for all firing sequences 2 starting in all

initial states in the equivalence class E containing S. The job

JE is the union of all the sets of computations produced in this

manner.

5. Repeat steps 1 through 4 for all equivalence classes of initial

states of program P. The set J of jobs produced, together with an

interpretation for P, is the expansion corresponding to P.

6. Repeat step 1 through 5 for all programs in the language L. This

generates the set of expansions E, which, together with appropriate

domains of values and actions, constitutes EE(L,I).

The formal definition of EE(L,I) is presented next, in a top-down

fashion paralleling the general description of an entry-execution model.

Each definition given below is followed by an explanation.

Definition 4.3.-1 Given a data-flow language L and interpreter I, EE(L,I)

is the five-tuple

(V, L, A, In, E)

where

V is the atomic value domain of L

L = WLDL, where W is the universe of labels in L, and

DL- {"ID", "IT", "IF"}U(WU{"OD"})xN

where N is the set of natural numbers, and none of

"ID", "IT", 'IF", and "OD" is in W

A is the set of actor types in L, plus the distinctive IG and OA

actions (described below).

-169-

In assigns zero to IG, one to OA, and to every other actor type in

A assigns the number of input tokens which that type removes

at each firing

E is the set containing, for each program P in L, the exvansion of

P, defined below.

IG is the initial-value generating action, and OA is the output-accepting

action. These are distinctive in that they are not associated with any

actors in any program in L. IG is needed because, as noted earlier,

initial values in the memory structure of a program must be modeled as

the outputs'of executions. Since in data flow, these values are not

outputs of real executions, dummy executions must be created. The dummy

executions Ex(IT,O), Ex(IF,O), and Ex(ID,O) will act as sources of initial

true, false, and program input tokens respectively; consequently, these

three executions constitute the set IE in all interpretations. Each of

these is an execution of the distinctive action IG. Since In(IG) = 0,

none of these three dummy executions will have any input entries.

OA is the action of another set of dummy executions. These will be

used to model the program output tokens. Each execution of the OA action

will be Ex((c,j),0), where c is either the label of an actor or the

distinctive label "OD", and J>O. These composite labels (c,j) allow

associating a unique such execution with every arc b in a program, by

the following correspondence:

If b is the number-J input arc of the actor labelled d, then the

associated dummy execution is Ex((d,j),0).

-170-

Otherwise, b is the number-j program output arc, for some J, in which

case the associated dummy execution is Ex((OD,J),O).

Since In(OA) - 1, each such execution e will have exactly one input entry

in all computations, with destination Dst(el).

As will be seen, every entry in a computation whose target is not

one of these dummy executions models the removal of some unique token by

a firing of a real actor. Without these dummy executions, therefore,

there would be no entries modeling the tokens left in the final state

after a halted firing sequence. But these are Just the tokens which

matter in determining if two such final states are equal, i.e., if the

program is functional. Having these added entries makes it much easier

to prove that only a functional program can give rise to a determinate

expansion.

The destinations in the transfers of the entries modeling tokens

left in a final state are all distinct, as required. This is done by

making each such destination be Dst(e,l) where e is a unique execution

of the OA action. It may seem that a neater choice would be to have each

destination be Dst(e,j) where e is a common execution of OA but the

integers j are distinct. This is not possible for two reasons:

1. In order to associate each distinct destination with an arc, a

program would have to include a numbering of all the arcs, which

it does not.

2. There would be an indefinite number of input entries to the common

execution e, violating the requirement that there is a maximum

number In(OA) of such entries in all computations.

• -171-

In general, an action has an input arity equal to the number of

input arcs of any actor with which it is associated. The only exception

is the merge gate, which always removes two tokens from its three input

arcs; its input arity is therefore two.

Definition 4.3-2 (Expansion of P) Given a data-flow language L, let P be

any program in L. Then the interpretation of P, Int(P), is (St, I,IE),

where St is the set of labels of the actors in P, plus the label set DL

I: St -+ A assigns to each label of an actor in P the type of that

actor, assigns the action IG to each of the labels "ID", "IT",

and "IF", and to every other label in DL assigns the action OA

IE - lEx(IDO), Ex(IT,O), Ex(IF,O)}

The expansion of P is the ordered pair (Int(P),J) in which J is the

set of jobs

= pJEI E is an equivalence class of initial states for PI

where JE is the job for E, defined below.

J is the set of jobs resulting from expanding all initial states of some

program. Thus the ordered pair (Int(P),J) is the type of abstract program

being called an expansion.

Definition 4.3-3 Given an equivalence class E of initial states for a

data-flow program P, the job for.E, J., is given by

-172-

J E " U U ((Js,2)

SEE 2EFS(S)

where FS(S) is the set of all halted firing sequences starting in S

n takes a set of computations into the set of all their prefixes

J3S, is the set of computations for S and 2, defined below. A.
JS,2 is a constrained set of permutations of the canonical computation

I(S,R). The algorithm for constructing (S,2) is given next, followed by

the definition of J
S, 2

Algorithm 4.3-1 Given an initial state S of a data-flow program P and a

firing sequence 2 starting in S, this algorithm constructs the canonical

computation r)(S,g) in two steps. The first step is to recursively

construct the computation co(S,2) as follows:

Basis: ,,(S,X) - X.

Induction step: For firing sequence " in which the last firing V is of

the actor labelled d in P, w(S,Qp) is derived from co(S,2) as follows:

Let e - Ex(d,n), where Qp has exactly n firings of d. Let

a1 , a2, ... , am be the input arcs of d from which tokens are removed in

going from state S'2 to S.2p, arranged in the order imposed on them by P.

Then o(S,Qp) is the concatenation

i(S,2p) = W(S,2) ,fl 1 f 2,.. 'f

where each entry fk' k - 1,...,., is specified by:

V(fk) is the value of the token removed from arc ak (except that if

that value is tagged pointer (p,R) or (p,W), V(fk) is just p).

The destination of the transfer T(fk) is Dst(ej), where ak is the

k

-173-

number-j input arc of d.

The source of T(fk) is given as the value of the function

Source(ak,S,2), which is defined next.

The value of Source(a,S,2) for any arc a and firing sequence 2 starting

in state S depends on whether or not the token on a in S'R was on that

arc in S:

1. If it was, then a is either a program input arc or a control arc.

a. If a is the number-i program input arc of P, then

Source(a,S,2) = Src(Ex(IDO),i).

b. If a is a control arc, then Source(a,S,2) = Src(Ex(IT,O),l)

or Source(a,S,2) - Src(Ex(IF,O),I), according to whether the

token is a true or a false token.

2. Otherwise, let i be such that a is in the number-i group of output

arcs of actor d' in P. Then Source(a,S,2) - Src(Ex(d',n'),i),

where there are exactly n' firings of d' in Q.

Now i(S,Q) is defined as:

If 2 is not halted, then (S,2) - W(S,Q).

If 2 is halted, let b1 , b2, ..., br be the arcs of P which hold

tokens in the final state S'Q. Then T(S,) is the concatentation

(S,) - w(S,2),g 2, ...,gr

where each entry gh, h = 1,...,r, is specified by:

V(g h) is the value of the token on arc bh in the final state

(except that if that value is (p,R) or (p,W), V(gh) is Just p).

The destination of the transfer T(g.) is Dst(e,l), where

execution e depends on whether bh is a program output arc of P:

'Law'=

-174-

1. If bh is the number-J output arc, for some J, then

e - Ex((OD,J),O).

2. Otherwise, bh is the number-J input arc of an actor

labelled d in P, for some J, and e - Ex((d,j),O).

The source of T(gh) is Source(bh,S,2). A
The computation co(S,2) is simply 2 with each firing (p replaced by a

th
set of entries describing the tokens removed by (p. If (p is the n firing

of the actor labelled d, these entries all have as a common target the

execution Ex(d,n) referring to qp. Let ak be an arc from which a token was

removed by (p, and let d' be the actor of which ak is an output arc. Then

the token removed from ak by (p was placed there by the firing of d' in 2

which most recently preceded (p. The execution referring to that firing of

d' is Ex(d',n'), where exactly n' firings of d' precede (in 2. That

execution is the source of the entry describing the token removed from ak

by T.

The canonical computation O(S,2), for a halted firing sequence 2,

supplements co(S,2) with a set of entries describing the tokens left in S-2.

For each arc b holding such a token, there is an entry whose source is the

execution referring to the firing which placed that token on b. The target

of that entry is the unique dummy output execution associated with b.

Therefore, for each token which appears in the course of 2, there is a

uniquely-identifiable entry f in -(S,2), and V(f) equals the value of that

token; this is true even if that token is not removed by any firing in 2.

The canonical computation n(S,2) retains almost all of the information

contained in the original firing sequence 2. What cannot be conveyed by a

-176-

satisfies all of the following (given Int(P)):

1. *(P) is the reduction of Q.

2. P is causal.

3. Let af ba any prefix of P, let a be the prefix of Q whose reduction

is *(a), and let the destination in T(f) be Dst(Ex(d,k),J).

a. If dJDL, then let b be the number-j input arc of the actor

labelled d. That actor is enabled in S'G, and if it is a merge

gate and b is its T (F) input arc, then its control input arc

holds a true (false) token in sIe.

b. If d(DL, then d = (cn). Let b be the number-n program output

arc of P, if c - "OD", or else the number-n input arc of the

actor labelled c. Then there is a token on b in SIG, and if c

labels an actor, there is no firing sequence starting in Se'

which contains a firing of c.

The last constraint in this definition is necessary to make tractable the

proof of the key property of persistence. A full discussion of its signif-

icance is provided in conjunction with that proof in Chapter 7; suggestions

for more meaningful alternative specifications are given in Chapter 8.

This completes the definition of EE(L,I); a proof that EE(L,I) is an

entry-execution model will be given shortly. First, this example of a

specific model can be used to gain an appreciation for the choice of

entries as the events in computations.

One benefit of using entries has already been illustrated by the

particularly compact definition of a determinate expansion. Recalling the

description in Section 4.1 of earlier models, determinacy usually was

-175-

computation are the essentially-arbitrary pointer-node pairs in the Copy

firings in 2. The consequences of this loss of information are explored

at length in Section 5.2.1. Here it will just be shown that from q(S,2)

can be reconstructed the reduction of 2 (recall from Definition 2.4-5 that

the reduction of 2 is 2 without the pointer-node pairs).

Definition 4.3-4 Given a computation a and an interpretation Int, the

firing sequence reconstructed from a with respect to Int, ((a), is defined

recursively as follows:

Basis: 4)(X) - 'k.

Induction step: P(af) depends on whether or not entry f is the initiating

entry in af (wrt Int) of an execution e - Ex(d,k) for any djDL and any k.

If not, then 4(af) = 1,(a). If so, then 4(af) - 4(a)(p, where p is the

firing which is just the label d.
A

In(S,2), the input entries of an execution are all grouped together.

If the nth firing in 2 is the kth firing of actor d, then the nth such

group in r)(S,2) are input entries to Ex(d,k). This execution is then the

nh fiin in4i~S2)i h th
th initiated in nS), and so the nth firing in is the k

firing of d. Hence, 4 (r(S,2)) is the reduction of 2.

For any permutation p of rI(6,2) which preserves initiation order of

executions, t(p) will also be the reduction of 2. The set of all such

permutations which are causal forms the basis of JS,2:

Definition 4.3-5 Let S be any initial state for a data-flow program P, and

let S2 be any halted firing sequence starting in S. Then the set JS of

computations for S and 2 consists of each permutation p of r)(S,2) which

Ih

-177-

defined as the equivalence of all the event sequences in a job, where each

event typically was either the initiation or the termination of an execu-

tion. Different models had different notions of equivalence, but there

was a very common method of proving determinacy. This technique, which

has been adapted for use here in Chapter 6, involves a great deal of

manipulation of event sequences:

The Determinacy Proof Technique - Prove that any pair of event sequences

in a job is equivalent by transforming one into the other through

a series of transpositions of adjacent events. Prove that each of

the transpositions takes a sequence w in the job into another

sequence c2 in the job which is equivalent to coI"

Event sequences are general enough that they could have been selected as

the representation of computations in the entry-execution model. The cost

of such a choice would have been that of having to manipulate an auxiliary

tabulation of the input and output values of each execution (in order to

* define equivalence in the absence of explicit memory structure).

EE(L,I) demonstrates the definition of a canonical entry sequence

corresponding uniquely to a (reduced) event sequence. It will always be

possible to construct such a canonical entry sequence. There will always

be a method analogous to Definition 4.3-4 to reconstruct the unique event

sequence from each canonical computation. The cost of using entry

sequences as computations is that of having to reconstruct reduced event

sequences at each transposition in the determinacy proof. This was judged

to be the more efficient alternative.

This argues for defining a job JE in EE(L,I) as the set of canonical

computations derived from all possible firing sequences starting in all

I,

-178-

Initial states in E. But JE actually contains many non-canonical permu-

tations of these computations. This is because transforming one canonical

computation into a different one requires a complex permutation, dependent

on the exact form of canonical computation peculiar to a model. To base

a determinacy proof on such a complex permutation would defeat the goal of

applicability to a wide range of models. The only elementary permutation

which can be used repetitively to take any entry sequence into any other

is a transposition of two adjacent entries. This imposes the requirement

on a model that any computation in a job can be transformed into any other

by a series of transpositions such that all intermediate computations are

also in that job. Accordingly, jobs in EE(L,I) are augmented as in

Definition 4.3-5.

4.3.2 Properties of Models of Specific Data-Flow Interpreters

The foregoing has defined the entity EE(L,I) for any data-flow

language L run on any interpreter I. The rest of the thesis is concerned

with the models of various data-flow languages run on two specific

interpreters; the following notation will be used to differentiate between

these interpreters:

For any data-flow language L:

EE(LS) denotes the model of L run on the standard interpreter, and

1E(L,M) denotes the model of L run on the modified interpreter.

Mis cown uding sub-section develops important general properties common

q.4.s of languages run on either of these interpreters.

,%& first property Is that, for any language L, EE(L,S) and EE(L,M)

., ,ided etrv-execution models. The only non-trivial proof

-179-

required is that, for every program P, every computation in every job from

the expansion of P is a computation for Int(P). Since every such compu-

tation is a prefix of a permutation of one of a certain set of canonical

computations, it is shown first that all of those canonical computations

are computations for Int(P). This proof requires two preliminary results,

of wide applicability, which are separated out as Lemma 4.3-1 next.

Given the canonical computation r(S,2) for any initial state S and

firing sequence 2 starting in S, the following is apparent from Algorithm

4.3-1: the appearance in r(S,2) of an entry with value v whose transfer

has destination Dst(Ex(d,k),J) means that the kth firing of d removed a

token of value v from d's number-j input arc. Lema 4.3-1 proves a

symmetric statement about the significance of an entry with value v whose

transfer has source Src(Ex(d,k),J). Usually, this means that tokens of

value v were placed on the number-j group of output arcs of d at d's kth

firing. However, this may not be strictly true if d is a Select and those

outputs were withheld on the modified interpreter; hence the weaker

assertion of the Lemma below. Also shown is how the number of input

entries to Ex(d,k) in rI(S,2) is related to the number of firings of d in Q.

Lemma 4.3-1 Let S be any initial standard or modified state for a program

P, let 2 be any firing sequence starting in S, and let Int(P) be (St,J,IE).

Then:

A: For any entry f in rI(S,2), let the source in T(f) be Src(Ex(d,k),i),

and let V(f) be v. If d is in St-DL, then there is a prefix &p of

2 containing exactly k firings of d such that tokens of value v,

(v,R), or (v,W) appear on the number-i group of output arcs of the

& 4'A

-180-

actor labelled d in P at the transition from S'5 to S'&p.

B: For any execution d - Ex(d,k), if d is in St-DL, then the number of

input entries to e in I(S,2) or in co(S,2) is given by

0 if there are fewer than k firings of d in 2

In(/(d)) otherwise

Proof:

(1) Let b be any arc in P, and let e be any prefix of 2 such that there

is a token of value X on b in S'8. Assume b is in the number-i

group of output arcs of actor d and there are exactly k>0 firings

of d in 0. Let Ed be the prefix of 2 in which (d is the kth

firing of d. Then Ed is a firing sequence starting in S, and so

d is enabled in S-E Def. 2.3-1

(2) There is no token on any output arc of d in S'. (l)+Defs. 3.3-6+2.1-4

(3) There is a prefix A p of e longer than C - i.e., containing exactly

k firings of d - such that tokens of value X appear on the number-i

group of output arcs of d at the transition from S'a to S'o(l)+(2)

Now prove that A and B are true with co(S,2) substituted for r(S,Q), by

induction on the length of 2.

Basis: 121- 0.

(4) a(S,2) X X, which has zero entries Alg. 4.3-1

(5) A is vacuously true (4)

(6) For any d(St-DL and k>0, there are fewer than k firings of d in 2,

and there are zero input entries to Ex(d,k) in c(S,2), hence B (4)

Induction step: Assume A and B are true for w(S,2) if 121 - n and con-

sider 2 - 6p, of length n+l, in which the last firing p is of actor c.

-181-

Let a - ca(S,O) and 3 - co(SOcP).

(7) Let f be any entry which is in P but not in a, let the source in

T(f) be Src(Ex(d,k),i), and let V(f) be v. If dESt-DL, there is

a token of value v, (v,R), or (v,W) on an arc in the number-i

group of output arcs of d in S'e, and there are exactly k>O

firings of d in 0 Alg. 4.3-1

(8) A is true for f (7)+(l)+(3)

(9) Since A is true for all f in a, A is true for all f in p

(8)+ind. hyp. A

(10) Let j be such that there are exactly j firings of c in 8p. Then

P is a followed by m input entries to e - Ex(c,j), where m is the

number of c's input arcs from which tokens are removed in the

transition from S*" to S*"8w Alg. 4.3-1

(11) For any dESt-DL and k>O, (d~c v k#j) = there are fewer than k

firings of d in 0 iff there are fewer than k firings of d in 40 A

there are the same number of input entries to Ex(d,k) in P as

in a (10)

(12) m B for d and k ind. hyp. B

(13) There are fewer than j firings of c in e but not in 80p (10)

(14) There are 0 input entries to e in a (13)+ind. hyp. B

(15) There are m input entries to e in p (10)+(14)

(16) m - In(I(d)) (lO)+Defs. 4.3-1+4.3-2

(17) B for co(S,8cp) (12)+(13)+(15)+(16)

Thus it is proven that A and B are true for w(S,g) for any 2. Now prove

that A and B are true for YI(S,2). If Q is not halted, then

qI(S,2) - 0 3(S,Q). Assume therefore that 2 is halted.

-182-

(18) Let a = a(S,Q) and P - '(S,2). Let f be any entry in , let

Src(Ex(d,k),i) be the source in T(f), and let V(f) - v. If f is

in a, then A is true by the above. Assume therefore that f is not

in a. If dESt-DL, then there is a token of value v, (v,R), or

(v,W) on an arc in the number-i group of output arcs of the actor

labelled d in S'2, and there are exactly k firings of d in 2

Aig. 4.3-1

(19) A for f, hence for all entries in rn(S,2) (18)+(l)+(3)

(20) For any execution Ex(dk), if dESt-DL, then the number of input

entries to the execution in p is the same as in a. By the above,

that number is 0 if there are fewer than k firings of d in 2, or

In(/(d)) otherwise Alg. 4.3-1

Now it can be shown that the canonical computations used to generate

the computations in the expansion of P are all computations for Int(P).

Also important to note is that any canonical computation is causal. The

proof of these properties is not very enlightening, and so has been

relegated to Appendix C.

Lema 4.3-2 Let S be any initial standard or modified state of any

program P, and let 2 be any firing sequence starting in S. Then TI(S,2)

is a causal computation for Int(P).
A.

For every computation a in a job from the expansion of program P,

there is an initial state S for P and a firing sequence 2 starting in S

such that the set of entries in a is a subset of those in n(S,Q). Thus

i

-183-

it is easy to show from the above that a is a computation for Int(P), and

that therefore:

Theorem 4.3-1 Given any data-flow language L, both EE(L,S) and EE(L,H)

are entry-execution models.

Proof:

(1) The entities V, L, A, and In in both EE(L,S) and EE(LM) satisfy

the corresponding specifications for a model Defs. 4.3-1+4.2-1

(2) Let E be the set of expansions from either EE(L,S) or EE(L,M), and

let (Int,J) be any ordered pair in E. Then (IntJ) corresponds

to a program P in L Def. 4.3-1

(3) Int - Int(P), which is an interpretation Defs. 4.3-2+4.2-2+4.3-1

(4) Let J be any job in J. Then there is an equivalence class E of

initial (standard or modified) states for P such that J E

Def. 4.3-2

(5) Let a be any computation in J. Then there is an initial (standard

or modified) state SEE and a halted firing sequence 2 starting in

S such that a is a prefix of some P in JS,2 Def. 4.3-3

(6) P is a permutation of n(S,Q), so the set of entries in a is a subset

of the set of entries in -9(S,2) (5)+Def. 4.3-5

(7) I(S,2) is a computation for Int(P) - Int. Let int - (St, 1,IE)

(5)+L-~m 4.3-2

(8) Let e - Ex(d,k) be any execution of which there is either an input

or an output entry in a. Then there is an input or output entry

of e in n(S,s) (6)

p$1

-184-

(9) dfSt and there are at most In(/(d)) input entries to e in y(S,2),

hence in a (8)+(7)+(6)+Def. 4.2-6

(10) The destinations of the transfers of the entries in a are all

distinct, and all entries whose transfers have the same source

have the same value (7)+(6)+Def. 4.2-6

(11) a is a computation for Int (8)+(9)+(10)+Def. 4.2-6

(12) J is a job for Int (5)+(1l)+Def. 4.2-3

(13) (Int,J) is an expansion (4)+Def. 4.2-2

(14) Eis a set of expansions, so EE(L,S) and EE(L,M) are entry-execution

models (2)+(13)+(l)+Def. 4.2-1

A
It was argued briefly earlier that the firing sequence reconstructed

from any canonical computation ?(S,2) is the reduction of 2. The follow-

ing Lemma provides a rigorous demonst-ration of this. It then uses that

result to make explicit the tacit assumption that a job contains all of

the canonical computations used to generate it.

Lena 4.3-3 For any data-flow program P, let S be any initial standard

or modified state for P, let 2 be any halted firing sequence starting in

S, and let Int(P) be (St,/,IE). Then the firing sequence reconstructed

from rn(S,2) wrt Int(P), 4(r (S,2)), is the reduction of 2 and r(S,2) is

in JS,2"

Proof: All initiations and reconstructions are with respect to Int(P).

(1) Let p - 1(S,2) and let a - q(S,2). Then P is a permutation of

i(S,62) and P is a followed by input entries to executions in the

set {Ex(d,k)I dEDL) Alg. 4.3-1+Def. 4.3-1

I - ,~v.

-185-

(2) D(P) 4 ,(a) (1)+Def. 4.3-4

Prove by induction on the length of the prefixes e of 2 that 4(a) is the

reduction of 2.

Basis: lel - 0.

(3) c(S,O) - X, the empty computation Alg. 4.3-1

(4) 4(o (S,O)) = k, which is the reduction of 0 (3)+Defs. 4.3-4+2.4-5

Induction step: Assume that for the length-n prefix 0 of 2, n_>0,

4 ((S,e)) is the reduction of 6, and consider prefix 6(p of length n+l, in

which the last firing p is of actor d.

(5) Let 8- (S,O) and T - c(S, p). Then y is 8 followed by m input

entries to Ex(d,k), where (p removes m tokens Alg. 4.3-1

(6) m = In((d)) (5)+Defs. 4.3-2+4.3-1

(7) Exactly one entry which is in y but not in 8 is the initiating entry

of an execution, and that execution is Ex(d,k) (5)+(6)+Def. 4.2-6

(8) D(y) is 4,(8) p', where (p' is the label d (7)+Def. 4.3-4

(9) 4)(8) is the reduction of 6

(10) The reduction of OT is the reduction of e followed by a firing

which is the label d Def. 2.4-5

(11) '(y) is the reduction of 6q (8)+(9)+(10)

Thus it is proven inductively that

(12) t(r)(S,Q)) - ,(P) - 4(a) is the reduction of 2 (1)+(2)

(13) P is causal wrt, and is a computation for, Int(P) (1)+Lemma 4.3-2

(14) Let yf be any prefix of P in which f - Ent(e,j), where e - Ex(dk)

and dESt-DL. Then f is in a (1)

(15) Let p be the shortest prefix of 2 such that f is in co(S,Ap). Then

-186-

cp is a firing of d, and every entry which is in y but not in

w(S,A) is an input entry to e Alg. 4.3-1

(16) There are at most In(I(d)) input entries to e in P, so there are

fewer than In(/(d)) in y (14)+(13)+Def. 4.2-6

(17) No entry which is in y but not in ca(S,A) is an initiating entry

(16)+(15)4-Def. 4.2-6

(18) 4%(y) - 45(w(S,A)), which is the reduction of A (17)+(11)+Def. 4.3-4

(19) A is the prefix of 2 whose reduction is 4(y) (18)+(15)

(20) d is enabled in S'A (15)+Def. 2.3-1

(21) Let yf be any prefix of P in which f - Ent(Ex(d,k),J) where dEDL

and d - (c,n). Let b be the number-n program output arc of P, if

c M "OD", or else the number-n input arc of c. Then f is not in

a and there is a token on b in S*2 (1)+Alg. 4.3-1

(22) a is a prefix of y, and every entry which is in y but not in a is an

input entry to an execution Ex(d',k') where d'(DL (21)+Alg. 4.3-1

(23) §(y) - 4,(a) (22)+Defs. 4.2-6+4.3-4

(24) 2 is the prefix of 2 whose reduction is 4(y) (23)+(12)

(25) There is a token on b in S'2, and since 2 is halted, there is no

firing sequence starting in S*2 (21)+Def. 2.3-1

(26) p is in J (1)+(12)+(13)+(14)+(19)+(20)+(21)+(24)+(25)+Def. 4.3-5A
By the construction in Algorithm 4.3-1, the integer k in an execution

Ex(d,k) serves as an index among all the executions of d initiated in a

canonical computation. I.e., Ex(d,k 1) is initiated before Ex(d,k 2) only

if ki < k2 . The final general result presented here is that this indexing

property is exhibited by all computations. An intermediate deduction in

-187-

the proof will be needed directly in Chapter 7; for convenience, it is

here separated out and proven first.

Theorem 4.3-2 Let P be any data-flow program, and let Int(P) be (StI,IE).

For any initial standard or modified state S for P and any halted firing

sequence 2 starting in S, let a be any prefix of any pausal permutation of

(S,2). Let 0 be any prefix of 2 whose reduction is 4)(a). Then for any

execution e - Ex(d,k) where dESt-DL, e is initiated in a c there are at

least k firings of d in 0.

Proof:

(1) dESt-DL = d is the label of an actor in P, and 1(d) is its action

Def. 4.3-2

(2) - In(I(d)) > 0 (1)+Defs. 4.3-1+2.1-5+2.1-2

Prove - first, by induction on the length of a. All initiations 'and

reconstructions 4 are with respect to Int(P).

Basis: jal - 0.

(3) For any execution e - Ex(d,k) where dESt-DL, e is not initiated in

a, so - is vacuously true (2)+Def. 4.2-6

Induction step: Assume - is true for any a of length n>O, and consider

a - yf of length n+l, which is a prefix of some causal, permutation P of

-0 ,)(Sv2)•

(4) *(y) is a prefix of ct(yf) Def. 4.3-4

(5) For any execution e - Ex(d,k) where dESt-DL, e is initiated in y

- there are at least k firings of d in any prefix of 2 whose

reduction is O(y) ind. hyp.

-188-

(6) - there are at least k firings of d in any prefix of 9 whose

reduction is P(yf) (4)+Def. 2.4-5

(7) f is not the initiating entry to an execution Ex(d,k) where dESt-DL

[for every such execution e, e is initiated in yf = e is initiated

in y - there are at least k firings of d in any prefix of 2 whose

reduction is 4(¥yf)] (5)+(6)+Def. 4.2-6

(8) Assume f is the initiating entry in yf of execution e = Ex(d,k)

where dESt-DL. co is a computation for Int(P) Lemma 4.3-2

(9) co has at most In(/(d)) input entries to e (8)+Def. 4.2-6

(10) a and co contain the same set of In(/(d))>0 input entries to e

(9)+(8)+Def. 4.2-6

(11) There is some j such that b, the number-J input arc of d, has a

token removed at each firing of d (1)+Def. 2.1-5

(12) Since there is at least one entry to e in ca, there are k firings

of d in 2 (10)+Alg. 4.3-1

(13) There is an entry g in o), hence in a, whose transfer has destination

Dst(e,j) (12)+(lI)+(10)+Alg. 4.3-1

(14) Let Src(Ex(d',k'),i) be the source in T(g). Then there is a prefix

&p of 2 in which (p is the kth firing of d, and (p removes a token

from b. d'EDL -o d'E{"IT","IF","ID"} - the token removed from

b by p is on b in S (11)+Alg. 4.3-1

(15) p is the first firing of d, so k - 1 (11)

(16) - since at least e is initiated in a, f(a) has at least k firings

of d Def. 4.3-4

(17) - any prefix of 2 whose reduction is I(a) has at least k firings

-189-

of d Def. 2.4-5

(18) Assume d(St-DL and k>1. Then there are exactly k' firings of d'

in A (14)+(15)+Alg. 4.3-1

(19) Since g is an output entry of Ex(d',k'), the initiating entry of

Ex(d',k') strictly precedes g in a, hence is in y

(8)+(13)+(14)+Defs. 4.2-5+4.2-7

(20) 4(yf) is 4P(y)(p, where p is a firing of d (8)+Def. 4.3-4

(21) Let OW be any prefix of 2 whose reduction is 4(yf). Then the last

firing p in 00 is of d, and the reduction of 0 is -1(y)

(20)+Def. 2.4-5

(22) There are at least k' firings of d' in 0 (19)+(21)+(5)+(6)

(23) The k-lt firing of d removes a token from b, as
does the kth

(11)+(18)

(24) There is a prefix &p' of A containing k-l firings of d such that a

token appears on b in the transition from S'E to S'Ep' (23)+(14)

(25) Either p' is a firing of d', or d' is a Select which is in a pool

in S's but is not in a pool in SE p' (24)+Def. 3.3-9

(26) Let Xp" be the prefix of 2 in which p" is the k-lst firing of d.

There is no firing of d' in X e d' is not in a pool in S'X

(23)+Def. 3.3-9

(27) There is a firing of d' in X - there is a longest prefix 15d, of X

such that there is no token on b in S'T, but there is one in S'T d,

d' is not in a pool in S'Ypd, (26)+(23)+Def. 3.3-9

(28) For every prefix Y' of S2 with JTcPdI n IT'I- IXI, there is a

token on b in S'Y', so d' is not enabled (23)+Defs. 3.3-6+2.1-5

&J

A"i"- i. IlIII -I

-190-

(29) d' is not in a pool in S'X (27)+Def. 3.3-9

(30) d' is not in a pool in S'X (26)+(27)+(29)

(31) d' is in a pool in S'C - there is a firing of d' in E, hence in A,

but not in X at which d' is placed in a pool (30j+Def. 3.3-9

(32) There is a firing of d' between the k-ist and kth firings of d

(24)+(25)+(31)

(33) Exactly k' firings of d' precede the kth firing of d, so at most

k'-i firings of d' precede the k-Ist firing of d (14)+(32)

(34) There are fewer than k firings of d in ep s the last firing p is the
th
nx firing of d, for n<k (21)

(35) - At most k'-I firings of d' are in 9 (33)

(36) There are at least k firings of d in 09 (34)+(35)+(22)

Thus it is proven by induction that

(37) e - Ex(d,k) is initiated in a - there are at least k firings of d

in e (14)+(15)+(17)+(36)

Next prove the converse, by contradiction. Assume

(38) There is an a and an prefix 6 of 2 whose reduction is 4)(a), and some

d(St-DL and k>O such that there are at least k firings of d in 0,

but Ex(d,k) is not initiated in a

(39) Let nik be the number of firings of d in 0. Then there are n

executions of d initiated in a (38)+Def. 4.3-4

(40) Since Ex(dk) is not initiated in a, there is an m>n such that

Ex(d,m) is initiated in a (39)

(41) There are at least m>n firings of d in 8 (37)+(40)

Since (38) leads to a contradiction between (39) and (41), (38) is false

-191-

i.e., there are at least k firings of dESt-DL in e - Ex(dk) is initiated

in a.

A
Corollary 4.3-1 Let P be any data flow program and let Int(P) be

(St, I,IE). Let S be any initial standard or modified state for P, and let

2 be any halted firing sequence starting in S. Let P be any computation

in JS,. For any dESt-DL and integer k such that Ex(dk) is initiated

wrt Int(P) in P, the initiating entry to that execution is preceded in

by exactly k-i initiating entries to other executions of d.

Proof: By induction on n, the number of executions of d initiated in each

prefix of P (all initiations and reconstructions are wrt Int(P)).

(1) In(I(d)) > 0 Defs. 4.3-2+4.3-1+2.1-5+2.1-2

(2) For any prefix a of P, let e be any prefix of 2 whose reduction is

1(a). Then the number of firings of d in e equals the number of

executions of d initiated in a Defs. 4.3-4+2.4-5

Basis: n = 1.

(3) There is one firing of d in e (2)

(4) Let Ex(d,k) be the one execution of d initiated in a. There are

at least k firings of d in e (2)+Thm. 4.3-2

(5) k - 1 (3)+(4)

Induction step: Assume the Corollary is true for the first n initiating

entries to executions of d in P, nO.

(6) Let y be the shortest prefix of P in which there are exactly n

executions of d initiated. Then any initiating entry in y to an

execution Ex(d,i) is preceded by the initiating entries to exactly

i-1 other executions of d ind. hyp

7 A -A B3 233 MASSACHUSETTS INST OF TECH CAMBRIDGE LA FOR COMPUTE--ETC F G 9/2
DATA-STRUCTURING OPERATIONS IN CONCURRENT COMPUTATIONS. (U)

03 OCT 70 D L ISAMAN
UNCLASSIFIED MIT/LCS/TR-224 Ni.

36 fl l l l l lf f f f f f

I-

jlj2.2~* I. 3o

1111I2-

1 11111.J

-192-

(7) Since there are only n initiating entries in y, the initiating entry

to any execution of d in y is preceded by the initiating entries

to at most n-1 other executions of d (1)+(6)

(8) Ex(d,i) is initiated in y - i-i 5 n-i i s : n (6)+(7)

(9) Since there are n executions of d initiated in y, Ex(d,i) is

initiated in y iff i 5 n (6)+(8)

(10) Let Ex(d,k) be the execution of d whose initiating entry
is n+lst

in P; i.e., that entry is preceded in P by exactly n other init-

iating entries to executions of d. Let a be the shortest prefix

of P containing that initiating entry. Then there are exactly

n+l firings of d in 6 (2)

(11) There are at least k firings of d in 0, so k 5 n+l (10)+Thm. 4.3-2

(12) Ex(d,k) is not initiated in y (6)+(10)+(l)

(13) k < n+1 Ex(d,k) is initiated in y (9)

(14) k - n+l (11)+(13)+(12)

(15) The n+lst execution of d initiated in 1 is Ex(d,n+l) (10)+(14)

(16) For any k 5 n+l, if Ex(d,k) is initiated in P, then its initiating

entry is preceded in by the initiating entries to exactly k-1

other executions of d (9)+(6)+(15)
Ax

-193-

Chapter 5

Structure-as-Storage Models

This thesis is concerned with defining structure operations which

make it easy to prove that parallel programs using them are functional.

The entry-execution model has been introduced as the vehicle for a general

proof of determinacy (which implies functionality). Thus the definitions

of the structure operations must be drawn within the framework of this

model. This Chapter uses the operations in the data-flow language LBS to

illustrate a suitable mode of definition.

Constraints on computations are used to "define" structure operations

in the following sense: This Chapter gives a set of example constraints.

Any model satisfying all of these is called a Structure-as-Storage (S-S)

model. These constraints concern only the input and output entries of

executions of structure operations, and are constructed so that EE(LBs,S)

is an S-S model (this latter point is proven in Section 5.3 below).

Therefore, any other language whose model is S-S may be considered to have

the same set of structure operations as LBS.

The LBS structure operations have already been defined using a schema

model of data flow (Definition 2.2-5). According to this definition, a

structure operation selected to fire in a state S outputs values depending

on just its inputs at that firing and the heap in S. In the entry-

execution model, even though the concept of state has been abstracted

away, it is not difficult to define the heap determined by a computation;

this is in fact done in Section 5.2. The output entries of an execution e

could then be constrained to depend just on e's input entries and the heap

I

-194-

determined by the computation immediately preceding e's initiation. To do

so, however, would greatly encumber a constructive proof along the lines

of the Determinacy Proof Technique: It would be necessary at each step

to characterize not only the newly-constructed computation, but also the

heap it determines.

A computation alone contains enough information to ascertain the

correct output of most executions. It has already been decided to employ

computations to convey both the order in which executions occur and the

values of their inputs and outputs. It is here further decided to fore-

sake the heap concept, in favor of using computations to express directly

the complex interrelationships which exist among executions of structure

operations.

5.1 The Constraints

The constraints defining a Structure-as-Storage model are listed

next. The remainder of this section presents the constraints and

describes how each is derived from the heap-oriented model of LS.

Definition 5.1-1 An entry-execution model (V, L, A, In, E) is a

Structure-as-Storage (S-S) model iff:

1. There is a distinct subset V of the atomic value domain V. Atomic
p

values in V are of pointer type. All other values in V are of
p

non-pointer type; included among these are nil and undef.

2. The domain A includes the following eight specific actions, and In

assigns to each the indicated input arities: Fetch (1), First (1),

Next (2), Select (2), Copy (1), Assign (2), Update (3), and

Delete (3).

-195-

3. For every expansion (IntJ) in E, for every Job JEJ, every computa-

tion in J satisfies the following constraints (all given later):

The Input/Output Type Constraint

The Atomic Output Constraint

The Structure Output Constraint

The Unique Pointer Generation Constraint

Furthermore, every pair of computations in J satisfies the Initial

Structure and First/Next Output Constraints, and J itself satisfies the

Pointer Transparency Constraint. A
5.1.1 Input/Output Types

From Definition 2.2-5, it is apparent that certain inputs to structure

operations must be of pointer type. Furthermore, it is generally true that

no other input to these or to other operations may be of pointer type; for

example, it is not possible to do arithmetic on pointers. The exception

to this rule are the pI actions:

Definition 5.1-2 Given a model (V, L, A, In, E), an action aEA is a

pseudo-identity (pI) action iff the following is true for every interpre-

tation Int - (St, lIE) in the model: For any execution e of a and

computation w for Int:

1. There is no entry in co whose transfer has source Src(e,i) for itl.

2. There is a J, depending only on the non-pointer-valued input

entries to e in co, such that the value of Src(e,l) in co (if any)

equals the value of Ent (e,j), the number-j input entry to e in w.

A I'

-196-

The constraints on the types of the inputs and outputs of execution

e are translated from Definition 2.2-5 into:

Constraint 5.1-1 A computation c for interpretation (St,J. IE) satisfies

the Input/Output Type Constraint 1ff, for all d(St and k>O, the input and

output entries of Ex(dk) in w are as described below, depending on 1(d).

Structure operations - Table 5.1-1 gives the type of input entry and

source values of each execution e of a structure operation.

pI actions - The values of any input or output entries of an execution

of a pI action or of an execution in IE may be either of pointer or

of non-pointer type.

All others - The value of any input or output entry of an execution of

any other action must be of non-pointor type.

A
5.1.2 Pointer Transparency

A pointer's only identity stems from its uniqueness; i.e., the only

relationship possible between two pointers is that they are distinct.

Operation Input Entries Sources

Ent(e,l) Ent(e,2) Ent(e,3) Src(el) Src(e,2)

Fetch ptr non-ptr non-ptr

First ptr ..--- non-ptr non-ptr

Next ptr non-ptr , non-ptr non-ptr

Select ptr non-ptr --- ptr non-ptr

Copy ptr .--- ptr ptr

Assign ptr non-ptr -- non-ptr non-ptr

Update ptr non-ptr ptr non-ptr non-ptr

Delete ptr non-ptr -- non-ptr non-ptr

Input/utput Types

Table 5.1-1

-197-

Any set of n distinct pointers will serve in any capacity (such as dom H

in a heap) equally as well as any other set of n distinct pointers.

This gives rise in the S-S entry-execution model to the principle of

pointer transparency: For any computation co, let {plp 2,...,pn} be the

set of distinct pointers appearing as the values of entries in cs, and let

(ql,q2 ,...,qn) be any other same-size set of distinct pointers. Replacing

Pi wherever it appears as the value of an entry in ca with qi, for

i - 1,2,...,n, yields a new computation which is identical to within

pointer values to co. Any computation so related to co is in every job that

W is in.

Definition 5.1-3 Two computations wI and &2 are identical to within

pointer values, written

r2 01

iff there is a total one-to-one mapping Y over V such that o2 can be
p

derived from cl by substituting for each entry fEw 1 a similar entry, whose

transfer is T(f) and whose value is given by

if V(f) is not a pointer, then V(f), else Y(V(f)).

A
Constraint 5.1-2 A job J satisfies the Pointer Transparency Constraint

iff for any computation w1 EJ and any other computation 2

C02 ' '1 ' '2 A

5.1.3 The Concept of Reach

As mentioned earlier, the intent here is to define the "S structure

operations without reference to a heap. That is, the outputs of any execu-

tion of such an operation are to depend upon just the inputs to that and

-198-

to previously-initiated executions. The current sub-section analyzes this

dependence precisely, using the schema model of LBS from Chapter 2; the

algorithm of Section 4.3 will then be used to take this dependence into

constraints on computations in EE(LB 5S).

The most important new concept in a heapless definition of structure

operations is that of the reach of a write-class firing (Assign,

Update, or Delete.) This section concentrates on defining the reach R(A)

of an Assign firing A in a firing sequence 2; the reach of an Update or

Delete is a straightforward extension of this. The principle of reach

is that R(A) should consist of just each firing (in 2 for which the

state change effected by V depends directly on the atomic input to A.

The significance of this principle is two-fold: 1) The output of a

Fetch firing F is necessarily equal to the atomic input of that unique

Assign firing into whose reach F falls. 2) For any Assign operatot d

in a determinate program, the reach of the kth firings of d in all firing

sequences starting in equal initial states for the program is the same.

Two other new concepts - access history and duration - must be

introduced before reach can be defined. The access history for pointer p

in firing sequence 2, Hp, is the sub-sequence of structure operator firings

in 2 whose pointer inputs equal p; it may be said that these are the

firings in 2 which "access the node n - n(p)." For any Assign firing A

in 2 which accesses .n, the duration D(A) is defined as follows* Let v be

the value of A's atomic input. Then D(A) is the set of firings in 2 which

access either n or a copy of n during a period when that node's value

mst equal v.

is

-199-

The reach of A is a subset of the duration of A. Precise identifi-

cation of all the firings in D(A), and of that subset of these which is

R(A), is done in two steps: first all those firings which access n, and

then those which access copies of n.

1. Firings which access n -

Let A' be the next Assign firing following A in H p, if any. Then

D(A) contains (among others) all firings in H pfollowing A but not

following A' (this includes A'). The effect of firing A is to assign

the value in SM(n) to be v, and the effect of A' is to change that value.

Therefore, the value of SH(n) is guaranteed to be v just at those firings

after A but not after A'. I.e., each firing in D(A) which accesses node

n does so while the value in 514(n) is guaranteed to be 'v.

A firing F of a Fetch operator d in D(A) effects a state change

which is distinguished by the placement of tokens with value v on d's

output arcs. This dependence means that every Fetch firing in the

duration of A is in the reach of A. Similarly, the control output of A'

depends on whether or not the value in S14(n) just before that firing is

nil. Since this value is the one assigned by A, A' (if it exists) is

in R(A).

Finally, let C be any Copy firing itt D(A) which accesses n. This

activates a new node m. 514(m) in the state itmediately following C equals

514(n) in the state immuediately preceding C. Since C is in D(A), the value

in that content equals the value assigned by A. Therefore, any Copy

firing in D(A) is also in R(A). Copy, Fetch, and Assign operators are

the only ones which effect state changes that depend on the value

I!
1

-200-

assigned to a node; hence the reach of an Assign firing contains only

Fetch, Assign, and Copy firings.

2. Firings which access copies of n -

Let C be any Copy firing in D(A) which accesses n, let q be its

pointer output, and let m - n(q). Then the initial value in SM(m) equals

v. Define the initial-value duration for q, Dq, to be the set of all

firings in H not following the first Assign firing (if any). Then Dq q

consists of just those firings which access m while it still has its

initial value v. Therefore, for any firing p in D of a Fetch, Assign, or
* q

Copy, the state change effected depends directly on the atomic input to A,

and so (p belongs in the reach of A. By defining D(A) to include Dq, R(A)

remains just all Fetch, Assign, or Copy firings in D(A).

The above paragraph is true for the pointer output of any Copy firing

which accesses m in D . In general, this reasoning can be appliedq

recursively to yield: D(A) consists of all those firings accessing n which

are identified in (1) above, plus the initial-value duration for any

pointer output of any Copy firing in D(A). R(A) then consists of all

Fetch, Assign, and Copy firings in D(A).

It can now be seen how this precise development of the concept of

reach leads to constraints on the outputs of Fetch and Assign firings:

The access histories in a firing sequence are all disjoint. An access

history is partitioned by the set of durations consisting of its initial-

value duration and the duration of each Assign firing appearing in it.

Therefore, the durations of Assign firings are all disjoint, and so each

Fetch or Assign firing F is in at most one reach. If F is in R(A) for

-201-

Assign firing A, then its data output must equal v, the atomic value input

to A (if F is a Fetch firing; the data outputs of Assign firings are

identically zero). The control outputs of F equal the value of the pred-

icate "v is not nil". (The case that F is not in the reach of any Assign

firing is examined later.)

The concepts of access history, duration, and reach can all be

defined for an entry-execution model by applying Algorithm 4.3-1 to the

descriptions just given. This is done in the next sub-section. The

concepts are extended to the Select, Update, and Delete operations in

Section 5.1.5.

5.1.4 The Atomic Output Constraint

Definition 5.1-4 Given any interpretation Int and a computation W for Int,

the access history H W for any pointer p in a) is a sequence of all the
p

entries in w whose values equal p and whose target executions are initiated

in w (with respect to Int). In this sequence, Ent(e1,j1) follows

Ent(e ,J2) iff e I's initiating entry follows e 2's in co.A

In the just-concluded schema-model development of the concept of reach,

an access history was defined as a sequence of firings. The entry-

execution analog of a firing is an execution. Thus it might be expected

that an access history would be defined here as a sequence of executions.

The reason for using a sequence of entries Instead is that each Update

execution [U has two pointer-valued input entries. It is necessary that

each appearance of UI in an access history R W be qualified as to which of

p

-202-

its input entries has value p. Since this information is inherent

in the entries of w, the form of access history defined above is

more convenient. It should be noted that the entries appear in the

order of initiation of their target executions, which is not necessarily

the same as their order of appearance in w.

Access histories have a significance of their own beyond their role

in defining reach: Let ca and o2 be any'two computations in a Job from a

determinate expansion. Then for every access history in wi, there is

an access history in &2 containing exactly the same entries.

Definition 5.1-5 Let w be any computation for any interpretation, and

denote by AS the set of Assign executions initiated in co. For each AEAS,

the duration of A, D(A), in c is a set of entries in co defined recursively

as follows: Let APS - {Ent(e,l)I eEAS}.

(1) Let H be the access history containing f - Ent(A,l). Then the set

{(g g follows f in H with no intervening entry from APS)

is contained in D(A).

(2) Let C be any Copy execution such that Ent(C,1)ED(A), and let q be

its pointer output. Then the set

{g[no entry from APS precedes g in H

is contained in D(A).

(3) D(A) consists of just those entries derived from (1) and (2) above.A
If Ent(e,l) follows Ent(A,l) in an access history and no entry from

APS appears between them, then:

.,.A

-203-

1. A and e both have the same pointer input,

2. e initiates after A, and

3. no Assign execution A' with the same pointer input initiates between

A and e

If w is from the model EE(LBSS), then w models a firing sequence 6, and

A and e model two firings. One of these firings is of an Assign, and

the other appears after it, but not after the next Assign firing, in the

same access history. Therefore, the execution e models a firing which

belongs in the duration of the firing modeled by execution A.

Definition 5.1-6 Let w be any computation for any interpretation. For

each Assign execution A initiated in w, the reach of A, R(A), in W is the

set of executions consisting of each Fetch, Assign, or Copy execution e

for which Ent(e,l) is in D(A). A

The outputs of all Fetch and Assign executions in R(A) depend just on A's

atomic input, as detailed in the following:

Constraint 5.1-3 A computation w for any interpretation satisfies the

Atomic Output Constraint iff, for every Fetch or Assign execution e which

is in the reach of some Assign execution A in co, the values of Src(e,l)

and Src(e,2) are as follows, where v = V(Ent(A,2)).

A n value of Src(e,l) value of Src(e,2)

(Data outputs) (Control outputs)

Fetch v v # nil

Assign 0 v # nil

A I

4'>

-204-

5.1.5 The Structure Output Constraint

The only other operations whose firings can affect other firings'

outputs are Update and Delete. This effect could be made precise by

defining the reach of such a firing U in a schema model of LBS. There

would be two differences between this and the earlier description of the

reach of an Assign firing, both of which are due to the fact that U affects

just one branch in the content of the node it accesses:

1. U's duration D(U) is ended only by another Update or Delete firing

accessing the same node and having the same selector input.

2. U affects only those firings in D(U) which depend upon the

existence of the branch which U changes. Therefore, the reach of U,

R(U), contains firings only of:

a. a Select with the same selector input as U,

b. an Update or Delete with the same selector input as U

(because control outputs are affected), or

c. a Copy, First, or Next.

The state change effected by a firing cp of a Copy, First, or Next which

accesses a node n depends on the entire set of branches in SN(n). This

in turn depends on every Update or Delete firing into whose duration P

falls. Therefore, any such firing in D(U) is in R(U).

Since the reach of an Update or Delete is so similar to that of an

Assign, the step of defining it for a schema model will be bypassed.

Instead, it is defined directly for an entry-execution model:

-205-

Definition 5.1-7 Let co be any computation for any interpretation, and

denote by SS the set of all Update and Delete executions initiated in W.

Then for each UESS, the duration of U, D(U), in w is defined recursively

as follows. Let

SPS(U) = {Ent(e,l)j eESS and V(Ent(e,2)) - V(Ent(U,2))}.

(1) Let H be the access history containing f - Ent(U,l). Then the set

{gj g follows f in H with no intervening entry in SPS(U)}

is in D(U).

(2) Let C be any Copy execution such that Ent(C,l) is in D(U), and let

q be its pointer output value. Then the set

IgI no entry in SPS(U) precedes g in Hw}q
is in D(U).

(3) D(U) consists of just those entries derived from (1) and (2) above.

A
SPS(U) contains just those entries which, by virtue of their targets

having the same selector input, could end U's duration.

Definition 5.1-8 Let ca be any computation for any interpretation. For

each Update or Delete execution U initiated in a), the reach of U, R(U), in

co is the set of executions

{ej Ent(e,l)ED(U), e is an execution of a Select, Update, or

Delete, and V(Ent(e,2)) - V(Ent(U,2))}

U {ej Ent(e,l)ED(U) and e is an execution of a Copy, First, or Next}.

~A

The exact dependence on U of the output of a First or Next execution in

R(U) is a complex issue, and will be considered later. The dependence on

A

-206-

U of the outputs of a Select, Update, or Delete execution in R(U) is

easily understood:

Constraint 5.1-4 A computation w for any interpretation satisfies the

Structure Output Constraint iff, for every Select, Update, or Delete

execution e which is in the reach of some Update or Delete execution U in

a, the values of Src(e,l) and Src(e,2) in w are as follows, depending on

the actions of e and U:

U is an Update -

value of Src(e,l) value of Src(e,2)
Action of e

(Data outputs) (Control outputs)

Select V(Ent(U,3)) true

Update or Delete 0 true

U is a Delete -

value of Src(e,l) value of Src(e,2)
Action of e

(Data outputs) (Control outputs)

Select undef false

Update or Delete 0 false

5.1.6 Initial Structures

Section 5.1.3 develops the concept of reach and uses it to relate the

output of a Fetch firing F to the input of the Assign firing into whose

reach F falls. This current sub-section is concerned with finding the

output of a Fetch firing which is not in any reach (a Fetch cannot be in

the reach of anything but an Assign). As before, answers are developed in

-207-

the standard schema model first, and then carried over into the entry-

execution model.

Let S be any initial state and 2 any firing sequence starting in S.

Then a Fetch firing which is not in any reach in 2 necessarily outputs the

value stored at some node in S. The identity of this node is determined

with the aid of the concept of dynamic descendancy, defined thus: Node n

is dynamically descended from node m in 2 iff:

1. n -m, or

2. n is activated at some Copy firing in 2 which accesses a node

which is dynamically descended from m in 2.

Every node in S'2 either is in S or is activated by a unique Copy firing

in 2, which accesses some existing node. Therefore, for any such node n,

there is a node m in S from which n is dynamically descended in 2. If a

Fetch firing F which accesses node n is not in any reach, it will output

the value v in SM(m) in S, as the following argument shows:

Let q be the pointer to n; i.e., f(q) - n. Then F is in the access

history H in 2, and is not therein preceded by any Assign firing (for
q

then F would be in the reach of that firing). Therefore no new value is

stored at n before F, so F outputs the initial value of n. If n - m, then

that value is v. If n * m, prove by induction on the length of its

dynamic descendancy that its initial value is v.

Since n is not in S, it is activated by some Copy firing C. The node

tn' accessed by C is dynamically descended from m. The initial value of n

is the value of n' in the state in which C fires. Since F is not in the

reach of any Assign, C is not either. Therefore, no firing preceding C

changes the value of n', so in the state in which C fires,

now

-208-

n' has its initial value. I.e., the initial value of n equals the initial

value of n', which by induction hypothesis equals the initial value of m.

In a schema model, then, the output of any Fetch firing not in a

reach is determined to be equal to a value stored in the initial state.

This result cannot be carried over to the entry-execution model, however,

because all concept of state has been abstracted away. Fortunately,

there is a weaker conclusion which can be expressed in the entry-execution

model and is sufficient for the purpose of proving determinacy:

Consider two different firing sequences 2 1 and Q22 starting in initial

states S 1and S2such that S2equals SIunder some mapping 1. Suppose

that Fetch firings F 1and F 2access nodes n 1 and n 2 in 2 1 and 2 2 respec-

tively, and that m 1 (in2) is the node in S 1 (S2) from which n 1 (n 2) is

dynamically descended. If m 2 - I(m 1) then in the initial states,

514(m 2) I(SM(m 1)), implying that m 1 and m 2 have the same initial value

v. Thus if neither F 1 nor F2 falls into the reach of any Assign firing,

both will output v.

This observation can be used to constrain certain Fetch executions

to have the same outputs in two computations in the same job (which is

all that is required for determinuacy). The constraint is developed in

several steps: First it is noted that every such pair of computa-

tions co, and 2is derived from a pair of firing sequences 21 and 2?

starting in two initial states S 1and S 2'Since w I and r ntesm

2 1 a 2 renhsm

The second step is to identify directly from wl (or o~)which pairs

job,~~~~~ ~~~ (02s)qul~ ndrsm mpigI

of pointers p and q are related thusly: the node pointed to by p Is

-209-

dynamically descended in 9 1 (or 2) from the node pointed to by q. This

is easily done, as follows:

Definition 5.1-9 Let co be any computation for any interpretation, and

let p be any pointer. Then p is dynamically descended in o) from a pointer

q, written DD (q,p), iff either

1. p - q, or

2. p is the value in w of an output entry of a Copy execution the value

of whose input entry is a pointer dynamically descended from q in W.

A
Let the heap in the initial state Si, 11,2, be (Ni,fli,SMi). Then, for

each pointer p appearing as the value of an entry in w,9 there is a unique

pointer q in dom Hi from which p is dynaically descended (Lemma 5.2-4

below).

The third and final step in developing the constraint is to define a

relation p over pointer-computation pairs. Two such pairs should be

related by p, written (p ,0l))p(p2 ,02), if f, for ql and q2 the pointers in

dom. n 1 and do n2 from which p, and P2 are dynamically descended in co and

02' 12 (q2) - I(fl1(ql)); then, it has been argued, any two Fetch executions

with p1 and P2 as inputs in wl and w2 are constrained to have equal

outputs, if neither falls into a reach. The relation p is first recur-
sively derived for p, and P2 which are themselves in dom HI and dom H2 .

The basis is that if p1 and P2 are on the same program input arc in

S1 and S2 , respectively, then nl2(P2) - IOll(pl)) (by definition of equal

states), so (pl,0l)p(p2, 2). The induction step involves Select execu-

tions S1 and S2 initiated in o1 and &2 with the same selector input s and

-210-

pointer inputs p1 and P2. For 11,2, if Si does not fall into a reach in

a l , then its pointer output is Pi', where (s,BrI(p 1))ESMi(UI(q)), q

being the unique pointer in dor fi such that DD (q i.P). (This is by an

argument analogous to that given earlier concerning the output of a Fetch

firing which is in no reach.) Then this series of inferences can be

drawn: (p1 ,a) 1)(p 2 9 2) 2 f 2 (q 2) - l(f 1 (q 1)) SM2 (IT2 (q 2)) - I(SMl(1 1 (ql))

-l 2 (P2 1) - I(I(p l')) (pl',l)p(p2
1 ,O2), since pi' is in dos rl,.

Finally, for any two pointers qEdom 17 and q2 Edom 1l2, and two other

pointers plql and p2 $q 2 , (qlgl)p(q2,%&O2) A DDo01(qtipi).On 2(q2) - I(fl(ql))

A q Is the unique pointer in dom ni1 from which p is dynamically descended

in oi - (p',wl)p(p2 , 2). The relation p is defined concisely next; a proof

that (plcl)p(p2,(2) iff nl2 (q2) - I(n,(ql)) may be found in a later section

(Theorem 5.3-2).

Definition 5.1-10 Given any interpretation Int - (St,/,IE), the equal

pointer relation is a binary relation over the set of all ordered pairs

(p,ca) where p is a pointer and co is a computation for Int. Two such pairs

(Pl,o)i) and (p2 'h02) are in this relation, written

(PI '0)) P(P2 'w2)

iff one of the following three statements is true:

1. There is a source s - Src(ei) for some EIE and some I such that

p1 is the value of s in wl and P2 is the value of s in w2

2. There are two Select executions S1 and S2 such that:

for i-1,2, pi is the value in w of Src(S,1),

for i-1,2, SI does not fall into a reach in o)'

V(nt (S1 92)) -V(Ento (S2 ,2)), and

-211-

(V Ent o (S 1 , 1)) ,_) P(V (Ent '2 (S 2 1)).,2)

3. There is a pointer q pl such that DD (q,pl) and (q,(1)p(p2 ,20).

One constraint arises imaediately from the claim that for any

PlEdOm 111 and p2 Edom 172, (p 1 , 1)p(p 2 ,o2) 1ff H2 (p 2) - I(r11(pl)): since

1' I2' and I are all one-to-one, given o , 0'2, and, say, p1. there is at

most one p2 such that (pl,(1)p(p2,w2). It is also possible now to state

a specific circumstance under which a Fetch execution must have the same

output in different computations in the same job. This is combined with

the analogous constraint on Select execution outputs in the following:

Constraint 5.1-5 Given an interpretation Int, any pair (i and c2 of

computations for Int satisfies the Initial Structure Constraint iff the

following are all true, where p is the equal pointer relation defined from

Int:

1. For 1-1,2, let pt and p1+2 be any two pointers such that neither is

the value of an output entry of a Copy execution in ca. If

(plc))p(p 2,'c 2) and (p 3 ,O)p(p 2 ,w 2), then P3
= pl, and if

(pl, 1)p(p2, 2) and (pl 1,o)p(p4,0) 2), then P4 " P2.

2. Let e1 and e2 be any two Fetch or two Assign executions initiated in

col and (2 respectively with pointer inputs p1 and P2 such that

(plOl)P(p2,w2). If neither falls into a reach, then for iI-,2,

the values of Src(el,i) in 0)I and Src(e2 ,i) in o)2 are the same.

3. Let •1 and 02 be any two Select, Update, or Delete executions

initiated in o) and w2 with equal selector inputs and pointer inputs

p, and p2 such that (p 1 ,o)l)p(p 2,co2). If neither is in a reach, then

-212-

a. the values of Src(el,2) in w and Src(e2 ,2) in w 2 are equal, and

b. if both are Update or Delete executions, then the values of

Src(el,1) in o and Src(e2,l) in w2 are the same (e.g. , zero).

A
It will be noted that there is no way to relate the output values of, e.g.

two Fetch executions when exactly one falls into a reach. Fortunately,

the need never arises.

5.1.7 The First/Next Output Constraint

This constraint concerns the outputs of two First or Next executions

in two computations in the same job. It is similar to the Initial

Structure Constraint, and is here developed in the same manner: first for

rhe schema model, then for the entry-execution model.

Let S be any initial state and let 9 be any firing sequence starting

in S. Let FN be any firing in 2 of a First or a Next operator, and let n

be the node accessed by FN. Then the outputs of FN depend just on the set

of selectors in SM(n) in the state in which FN fires. A selector s is

in this set iff:

1. FN is in the reach of an Update (not a Delete) firing having the

selector input a, or

2. FN is not in any such reach and s is in SM(m) in S, where a is

dynamically descended from m in 2.

This leads to the following sufficient condition under which two First or

Next executions output the same value in different computations in a job

in RE(LssS):

-213-

Constraint 5.1-6 Given an interpretation Int, any pair a), and 02 of

computations for Int satisfies the First/Next Output Constraint iff the

following is true, where p is the equal pointer relation defined from Int:

Let e1 and e2 be two First executions, or two Next executions with

the same selector inputs, initiated in u) and w2 respectively. Then for
i=1,2, the values of Src(elti) in a and Src(e2,) in w2 are the same if:

1. the values of the pointer inputs to e1 and e 2 are p1 and p2 such

that (PI'wl) P(P2' 2) , and

2. for each selector s, e1 is in the reach of an Update (Delete)

execution with selector input s in ci tff e2 is in the reach of an

Update (Delete) execution with selector input s in w2.

A
5.1.8 The Unique Pointer Generation Constraint'

In a schema model of an S-S language, the constraint on the pointer

output by a Copy firing is quite elementary: Letting (NI7,SM) be the

heap in the state in which the Copy fires, the pointer which it outputs

must be distinct from all those in do= H. The corresponding constraint

in an entry-execution model is more complex, however, due to the absence

of any concept of heap. The problem there may be stated as: Given a

computation in which a Copy execution has output entries of value p, from

which other entries' values must p be distinct. The solution is developed

below for EE(

Let (Int,J) be any expansion from EE(Lus,S) , where Int - (St, I,IE).

Let w be any computation in any job in J; then co is a computation for Int.

Let S be the initial state, and 2 the firing sequence starting in S, such

-214-

that w is a prefix of some computation in JsR" Then for any pointer q

which appears as the value of entries in w, the first such entry must be

an output entry of either an input execution (one in IE), a Copy execution,

or a Select execution which is in no reach: The only other executions

which can possibly have pointer-valued output entries are pI executions

and Select executions which are in reaches (Constraint 5.1-1). If a p1

execution e has an output entry of value q, then it has an input entry of

value q, which must precede that output entry in w. If a Select execution

S is in the reach of an Update execution U, then S's output entries have

the same value as Ent(U,3). U is initiated before all executions in its

reach, so Ent(U,3) must precede all output entries of S.

Let (N,n,SM) be the heap in the initial state S. If q is the value

of an output entry of an execution in IE, then there is a token with value

q in the configuration in S; thus q must be in dom TI. If q is the value

of an output entry of a Select execution S which is in no reach, let s be

S's selector input. By analogy with the argument given earlier for Fetch

executions, the pair (s,17(q)) must be in the content of some node in N,

which implies also that q must be in do. Hl. In either case, p, being the

output of a Copy execution, must be distinct from q. Finally, p clearly

must be distinct from the value of the output entries of any other Copy

execution in co. These conclusions are summarized in:

Constraint 5.1-7 Given an interpretation Int - (St, I,IE), a computation

(a for Int satisfies the Unique Pointer Generation Constraint iff the

following is true: Let C be any Copy execution initiated in o), and let

-215-

p the value of its output entries in w (if any). Then p is not equal to

the value of the output entries of any execution which is:

1. in IE, or

2. a Copy execution other than C, or

3. a Select execution which is in no reach in w.

A
This completes the definition of a Structure-as-Storage (S-S) model.

The system of constraints just presented illustrates a mode of specifying

sets of operations in the medium of the entry-execution model: all

languages whose models are S-S contain some common set of operations. In

particular, since it is claimed that these constraints were constructed so

that EE(LBs,S) is an S-S model, the set of structure operations in LBS

has now been formally described. Section 5.3 proves rigorously the

validity of this claim; first, Section 5.2 develops a new concept import-

ant not only to that proof, but also to an appreciation of the information

content of an entry-execution computation.

As noted earlier, the work of Greif [191 is closely related to the

entry-execution model and to the use of- onstraints on computations to

specify operations. She studied the behaviors of actor systems. A

behavior is a partial order of events, which are closely analogous to

entries. A given actor system with given initial conditions may exhibit

several different behaviors; similarly, in the entry-execution model, a

given program and input expands into a job, a set of sequences of entries.

The two models are best brought into correspondence by viewing a job as

the set of all total orders of entries compatible with all the possible

behaviors for a given system and initial conditions.

-216-

Various techniques for coordinating parallel processes were described

by the additional orderings they imposed on all possible behaviors (i.e.,

orderings beyond those inherent in the individual processes). To quote the

most relevant example, a single cell of read/write storage (analogous to

a node) was defined by constraints on events, which depended on the order

in which operations were performed on the cell. That is, for a given cell,

each behavior had to specify some total ordering of all operations on that

cell. Furthermore, the events so ordered had to satisfy certain

constraints, notably that the output of a read operation equals the input

to the write operation which most immediately preceded it (with respect to

the particular total ordering).

The major difference between the entry-execution model and the actor

model is in level of abstraction. The former is rooted in a view of

programs as fixed sets of indivisible instructions. A single actor, on

the other hand, can model anything from an addition operator to an entire

program. An actor's function can change with time, and new actors can be

created dynamically. Consequently, it is much harder to grasp the connec-

tion between a concrete data-flow program and an actor system which models

it. Given the limited objective of this thesis, the entry-execution model

seems more appropriate. It is felt, however, that partial orders of

entries would be useful tools in specifying or proving what a program does.

IK

-217-

5.2 The Heap Determined by a Computation

This section develops the definition of the heap determined by a

computation (from an initial heap). The derivation confers the desirable

property that for any firing sequence 0 starting in any state S - (r,U),

the heap determined from U by the canonical computation rI(S,G) is the

heap in the state S'e. The significance of the concept is three-fold:

1. It demonstrates tl~e relationship between an abstract computation and

a more easily-visualized heap, without recourse to an interpreter.

2. It lies at the heart of the proof (in Section 7.3) that determinacy

in the entry-execution model EE(LD,M) implies functionality of LD

programs.

3. It commences the verification that EE(LBSS) is an S-S model.

The final five of the seven S-S constraints concern the values of the

output entries of structure operation executions in a computation (or in

a pair of computations) in a job J. The first and most difficult step

in proving that these are satisfied by all computations in J is showing

that they are satisfied by all canonical computations in J. The role in

this of the heap determined by a computation is indicated in the following

brief outline.

For any initial state S = (r,U) and halted firing sequence 2 starting

in S, for the canonical computation o) - (S,2):

1. The value of the output entries of a structure operation execution

in co equals the value of the tokens output by some firing (p in 2.

2. The value of those tokens depends on the content of a particular

node n in the heap in SO where 8 is such that 8p is a prefix of a.

-218-

3. That heap is identical to the heap determined from U by (S,G).

4. The content of n in that latter heap depends on the initial content

(in U) of some related node m, or on the inputs to certain executions

in co.

5. Those are just the executions whose durations in w contain Ent(e,l).

Thus the values of the output entries of e may depend on the inputs

to another execution e' in w. It will be seen that there is such a

dependence iff e is in the reach of e', and if so, the dependence will be

that dictated by the Atomic or Structure Output Constraint. If e is in

no reach, then its outputs depend just on the initial content of m. The

outputs of another execution e' in another computation in the same job

may depend in the same way on that initial content, if e' does not fall

into a reach either. In this case, the outputs of the two executions will

be equal, as required by the Initial Structure Constraint. Similar

reasoning applies to the remaining two Constraints.

The first two subsections below describe the construction of a heap

(NI ,SM) from a computation: N and H in Section 5.2.1 and SM in Section

5.2.2. Section 5.2.3 then proves that r)(S,e) determines the heap in S'8.

5.2.1 Node Activation Records

A firing sequence e starting in initial state S - (r,U) determines a

heap in the manner prescribed in Definition 2.3-1; this is the heap in

the state being denoted as S'8. The goal here is to define the heap

determined from an initial heap by a computation in such a way that the

heap determined from U by T(S,O) is the heap in S-0. This development i9

-219-

complicated by the fact that there is not quite enough information in a

computation to completely determine a heap from just U. The present sub-

section seeks to discover what information is missing from 0), and how it

might best be supplied; the search commences by examining 0 to see what

information it uses to determine a heap.

A heap (Definition 2.2-2) is an ordered triple (N,fl,SM), where

N is a set of active nodes

17 is a one-to-one function from V onto N
p

SM is a function assigning a content to each node in N.

Let U be (N0 ,1 0 ,SM0) and let the heap in S'* be (N,f,SM). Then N consists

of the nodes in N0 plus those activated by Copy firings in e. A Copy

firing can activate any arbitrary node not already in the heap. Therefore,

determining N requires explicitly specifying which nodes are activated by

firings in 0. Similarly, r7 consists of 10 plus an association of a unique

pointer, also chosen arbitrarily, with each node in N-NO. Hence, deter-

mining 17 requires explicitly specifying, for each node activated by a Copy

firing in 0, the pointer which points to it. Finally, the content SM(n),

for any nEN, is determined from the initial content of a related node m,

plus the inputs to certain firings in @. As shown in Section 5.1.6, m is

the unique node in N0 from which n is dynamically descended in 9. Thus it

is necessary to know, for each nEN-N0, which Copy firing activated n (to

determine its corresponding m) and which pointer points to n (to determine

17).

-220-

This information was embedded in the firing sequence 2 by making

each firing cp of a Copy labelled C be (p - (C,(p,n)); this specifies

explicitly that the node activated by (is n, and that the pointer to n

is p (i.e., f(p) - n). The canonical computation w = r(S,2), however,

does not contain all of this information. For example, a computation

contains no nodes, so a separate listing of the nodes in N-N0 will be

needed. There are pointers explicit in u): Let p be the value of the

tokens output by the kth firing of Copy operator C in 2. If one of

these is removed by a subsequent firing in 2, then the execution Ex(C,k)

has output entries in w with value p. However, if none of these tokens

is removed by firings in 2 (which is possible), then Ex(C,k) has no

output entries in o; i.e., even though p is in dom H, it does not

necessarily appear in w. Thus the only way to guarantee that the pointers

pointing to all of the nodes in N-N are known is to supply a separate
0

list of them. Furthermore, each pointer in this list must be paired with

the node to which it points. The set of ordered pairs in 17-T 0 contains

all of the above information.

Finally, in order to determine all dynamic descendancy relations,

the nodes in N-N must be paired with the Copy executions initiated in W.
0

All of the above lists and pairings can concisely be made explicit in

the form of a node activation record:

Definition 5.2-1 Given an interpretation Int, a domain V of pointers,P

and a domain Nof nodes, a node activation record is a function

4AR: C- VxN
P

-221-

where C is a set of executions of the Copy action, per Int.

Denote by "ran NAR" the multisett containing, for each CEC, the ordered

pair which is NAR(C).

A node activation record NAR should contain enough additional

information for a computation w to determine a heap from an initial heap.

Specifically, each Copy execution initiated In o) should be associated by

NAR with a pointer-node pair. These associations may in fact duplicate

information in w: In addition to the pointer value associated with Copy

execution C by NAR, there may be pointer-valued output entries of C in W;

if so, the two pointer values should of course be the same. Any node

activation record satisfying these two properties is compatible with (0:

Definition 5.2-2 Given an interpretation Int and a computation w for Int,

any node activation record NAR is compatible with w iff, for every Copy

execution C initiated in w with respect to Int:

1. NAR(C) is defined, and

2. if there are output entries of C in c, then the value of those

entries is the pointer in the ordered pair which is NAR(C).

In the heap (N,f,SM) determined by a computation co from an initial

heap U - (N0, 0,SM0) and a compatible node activation record NAR, ri is

formed by appending to n 0 the multiset of pointer-node pairs in ran NAR.

Since any n must be one-to-one, for each pair (p,n) it ran NAR, there can

be no (p',n) for p'sp or (p,n') for n'#n either in n0 or in ran NAR.

tuultiset: Analogous to a set, but elements may appear more than once.
[25, p. 6271

-222-

Furthermore, for each (p,n)61, there must be a unique node m in N such

that SM(n) can be based on the initial content SM0(m). As explained in

Section 5.1.6, p is dynamically descended in w from the pointer to M.

However, if the same pair (p,n) appears twice in ran NAR, or is both in

ran NAR and in r10, then p may be dynamically descended in a) from pointers

to two different nodes in N This is because by compatibility, either

two different Copy executions may have output entries of value p, or p is

the value of the output entries of a Copy execution even though n itself

is in N0. In order to simplify the determination of m, then, this ambigu-

ity, along with the possibility that 11 will not be one-to-one, are

disallowed; i.e., the heap determined by ca from U and NAR is defined only

if ran NAR is consistent with U:

Definition 5.2-3 A multiset AP of pointer-node pairs is consistent with

a heap U - (N,17,SM) iff no pointer or node in a pair in AP is also in any

other pair in either AP or ri. A

Given a compatible and consistent node activation record NAR, any

computation should be able to determine a new heap from any initial heap.

It is desired that, in particular, the computation n(S,8), for any initial

state S - (r,U) and firing sequence e starting in S, should determine from

U - (N0,r10 ,1SN) the heap (N,n,SM) in S'e. This requires that ran NAR

should equal the set of pointer-node pairs n- 0 , which is in turn just the

set of ordered pairs in the Copy firings in e. If the kth firing of Copy

actor d in e is (d,(p,n)), then that firing places tokens of value p

d's output arcs (Definition 2.3-1). Then if Copy execution Rx(d,k) has

-223-

output entries in TI(S,O), they have value p (Lemma 4.3-1). For compati-

bility, therefore, the appropriate node activation record is one which

associates (p,n) with Ex(d,k):

Definition 5.2-4 Given any LBS program P, let 0 be any firing sequence

starting in an initial state for P, and let w be any computation for

Int(P). Then the node activation record derived from G and w, NAR, is

specified as follows:

1. NAR(C) is defined iff C is a Copy execution initiated (wrt Int(P))

2. For any such Copy execution C, let d and k be the label and integer

such that C - Ex(d,k). Then NAR(C) - (p,n), where the k t.firing

of d in 0 is (d,(p,n)). A
Lemma 5.2-2 below verifies that the node activation record derived from

0 and i1(S,0) is compatible with n(S,B), and that its range is consistent

with the heap in S. This is preceded by a confirmation of the cumulative

effect of Copy firings in a firing sequence.

Lemma 5.2-1 Let S be any initial (standard or modified) state for an S

program, and let 2 be any firing sequence starting in S. Let ft be any

prefix of 9 in which p is a Copy firing (d,(pn)). Then for any prefix a

of 2,

< Ie p ptdom ni and nbN in S.A, and

-Iep pEdom n and nEN in S.A.

Proof.: Prove the second implication first, by induction on the length of A.

~ --

-22 4-

Basis: [AI - lItI.
(1) (p,n) is added to 17 In going from SeO to S,~ SI Def. 2.3-1

(2) p~dom n1 and nEN in S"A (l)+Def. 2.2-5

Induction step: Assume the second part of the Lemma is true for the

length-k prefix A of 2, 10epI f k < 121 and consider the prefix &p' of

length k+l.

(3) p~dom 17 and nEN in S*A Ind. hyp.

(4) dom n7 in S-A is a subset of dom, n in S-Acp' and N in S.6 is a subset

of N -a S * P' Def. 2.2-5

(5) p (dom 17 and n M in S b~'(3)+(4)

Thus it is proven by induction that

(6) JA H It 1p pfdom rland nEW in S*

Now prove the first part of the Lemma by contradiction. Assume

(7) There is a prefix A of 2, 161 < 141j, such that pfdomfn or nEN inS*A

* By the induction above, since 1e1 IftI.

(8) p~dom 17or nfN in Sl (2)+(6)

(9) (p,n) cannot be added tofl1 in going from SeO to S-60 (8)+Def. 2.2-5

Since (7) leads to a contradiction between (1) and (9), (7) is false.

Lea 5.2-2 Given an LBS program P, let s - (r,U) be any Initial state

for P. Let 2 be any firing sequence starting in S, and let (a -n6,)

Then the node activation record derived from 2 and (a is meaningfully

defined and is compatible vith w~, and ran NAR Is consistent with U.

Proof:

(1) w~ is a computation for Int(P) Iea 4.3-3

-225-

(2) Let Int(P) -(St,I,IE). The definition of NAR makes sense if f, for

every execution C - Ex(d,k) initiated in w~ vrt Int(P), i~d) - Copy

there are at least k firings of d in 2 (l)+Def. 5.2-4

(3) C is initiated in w~ and 1(d) - Copy = there is In(Copy) -1 input

entry to C in a) Defs. 4.3-1+4.2-6

(4) NAR is meaningfully defined (3)+(2)+Leama 4.3-1

(5) For every Copy execution C initiated in (o, NAR(C) is defined

Def. 5.2-4

(6) Let (pl,nl) and (p2 n 2) be any two distinct pairs in the multiset

ran NAR. Let C 1and C 2be the two Copy executions such that, for

1-1,2, NAR(C1i) - (Pt and let d i and k i be such that Ci W

Ex(di,ki) Then (pi,n) is in the kit firing in 2 which contains

d i Def. 5.2-4

(7) The k thfiring of d1 and the k thfiring of d are distinct firings1 1 2 2

in 2. Assume, without loss of generality, that the k t firing of

d2is the later of these. I.e., there is a prefix OcPla(P2 Of 2

in which q- (di,(pi~ni)) (6)

(8) Let the heap in Seqt1 be (NJI,SM) and let U be (N0,T10,SH0). Then

since I G(P1 I < I q1&P421 and IX I < I e(PlAP21 P2 idomfl, n2 IN,

p2 Idom rio, and n 2PN (7+Lem 5.2-1

(9) p,(dom fl and n1EN, so p2*pl and n 2*n 1 (8)+(7)+Def a. 2.3-1+2.2-5

(10) For any pair in ran NAR, neither the pointer nor the node in that

pair is in any other pair in either ran WAR or no0; i.e., ran WAR

is consistent with U (6)+(8)+(9)+Def. 5.2-3

(11) Let C be any Copy execution initiated in co, and let d and k be such

-226-

that C = Ex(d,k). C has output entries in w = there is a prefix

&p of 2 containing exactly k firings of C such that tokens of

value p appear on the output arcs of the actor labelled d in P at

the transition from S"8 to S.&P Lemma 4.3-1

(12) * that transition is the result of the kth firing of d in 2, and

3n(N: (p,n) is added to IT at that transition Def. 2.2-5

(13) (p,n) is in that firing Def. 2.3-1

(14) NAR(C) - (p,n) (ll)+Def. 5.2-4

(15) If C has output entries in w, their value is the pointer in NAR(C)

(11)+(14)

(16) NAR is compatible with ((1)+(5)+(15)+Def. 5.2-2

The following definition of a quasl-inverse of a node activatibn

record will prove very convenient:

Definition 5.2-5 Given a node activation record

NAt: C -+ V xN
p

the Creating-Copy function corresponding to NAR,

CC: V -C
p

is given by

C if there is an nfN such that NAR(C) = (p,n)
CC(p) C undefined otherwise

For any pointer p, CC(p) is the Copy execution whose output entries have

value p, as the following lemma shows:

-227-
Lemma 5.2-3 Let S be any initial standard state for an L prograim P, and

let 2 be any firing sequence starting in S. Let Tr be the canonical

computation T(S,2). and let the heap in S be (,TSM). Let NAR be the

node activation record derived from 2 and n, and let CC be the correspon-

ding Creating-Copy function. For any pointer p which is the value of an

entry in 7:

p is the value in n of the output entries of a Copy execution

p I domn

, CC(p) is defined, the first entry in rj with value p is an output

entry of CC(p), that entry is strictly preceded by Ent(CC(p),l),

and there is no other Copy execution whose output entries have

value p.

Proof: Prove the second implication first.

(1) Let p be any pointer not in dos TI which is the value of some entry

in T. Then either some firing in 2 removes a token with value p

or 2 is halted and there is a token with value p on an arc in

2S Alg. 4.3-1

In what follows, alternatives in parentheses refer to the case that 2 is

halted and no firing in it removes a token of value p.

(2) Let 09 be the prefix of 2 such that 9 is the first firing (if there

is one) in 2 to remove a token with value p. Let b be an arc of

P from which such a token is removed by 0 (or let b be an arc on

which there is a token of value p in S'2). Either that token is

on b in S or it is placed there by some firing (p' in e (or in 2)

of 'he actor d of which b is an output arc (1)+Def. 2.1-5

-228-

(3) If that token in on b in S, then p is in dom n Def. 2.2-6

(4) That token is placed on b by a firing p, of d in e (or 52)(l)+(3)+(2)

(5) Let A be such that &p' is a prefix of 0 (or Q). p' does not

remove a token with value p (4)+(2)

(6) d is either a Select or a Copy operator (4)+(5)+Defs. 2.2-5+2.2-4

(7) Let n be n(p). Since pidom i, niN, so there is no node m and

selector a such that (sn)ESM(m) in S Def. 2.2-1

(8) For any prefix Rp" of A, if there is a node m and selector s such

that (s,n)ESM(z) in 8Sp", then either (s,n) is in SM(n) in S's or

1" is an Update firing which removes a token of value p Table 2.2-1

Thus by induction, since no firing in 6 removes a token of value p,

(9) There is no m and s such that (s,n)(SM(m) in S'A (2)+(5)

(10) d is a Select operator - there is a node m and selector a such

that (s,n)ESM(m) in S'A Table 2.2-1

(11) d is not a Select operator (9)+(10)

(12) d is a Copy operator (6)+(1l)

(13) There is no entry with value p in co(S,O) (or w(S,2)) (2)+Alg. 4.3-1

(14) Letting Int(P) - (St, /,IE), there is an entry with value p in

a(S,ft) (or 1(S,2)), that is an output entry of execution Ex(dk)

for some k, and 1(d) - Copy (2)+(4)+(12)+Alg. 4.3-1+Def. 4.3-2

(15) w(S,&p) (or n(S,2)) is a prefix of 71 Alg. 4.3-1

(16) The first entry in with value p is a output entry of a Copy

execution C - Ex(d,k) (13)+(14)+(15)

(17) n} is causal with respect to Int(P) Lema 4.3-2

-229-

(18) The initiating entry to C strictly precedes the first entry in 7)

with value p, so C is initiated in T (17)+(16)+Def. 4.2-7

(19) Since d has only a number-1 input arc, that initiating entry can

only be Ent(C,l) Alg. 4.3-1

(20) NAR is compatible with T) and ran NAR is consistent with the heap

in S Lemma 5.2-2

(21) There is a node n such that (p,n) - NAR(C) (20)+(18)+(16)+Def. 5.2-2

(22) CC(p) is defined and equals C (21)+Def. 5.2-5

(23) There is no other Copy execution C' and node n' such that

(p,n') = NAR(C') (20)+Defs. 5.2-3+5.2-4

(24) There is no other Copy execution of which p is the value of the

output entries (20)+(23)+Def. 5.2-2

Now prove that if p is the value in r9 of the output entries of a Copy

execution C - Ex(d,k), then p~dom ri.

(25) There isa node n such that (pn) = NAR(C) (16)-(21)

(26) The kth firing of d in 2 is (d,(p,n)) (25)+Def. 5.2-4

(27) Let Ap be any prefix of 2 such that cp = (d,(p,n)). Then since

I < IAqpj, pddom 7 in S'X - S (26)+Lemma 5.2-1+Def. 2.3-1, A
5.2.2 The Contents Determined by a Computation

With the additional information supplied by a compatible and consist-

ent node activation record NAR, a computation wA can determine a heap

(N,In,SM) from an initial heap U = (N0, 0,SM0). N and 1 are constructed

directly from NAR as follows: n is 1i0 plus the pairs in ran NAR, and N is

the set of nodes in the ordered pairs in U. All that remains is to

establish how, for each node nhN, w determines the content SM(n) from U

-230-

and NAR. There are two cases to consider: a given content either is or

is not dependent on some execution(s) in w.

5.2.2.1 Contents Dependent on Executions in c

Let 2 be any firing sequence starting in any initial state S = (r,U),

and let Ap be any prefix of 2. The intent here is that the heap deter-

mined from U by a - rl(S,A) should be the heap (NJ,SM) in S'A. Assume

that the last firing p in (p is the kth firing of Fetch operator d, and

that p accesses node n. Two conclusions can be drawn about the value v

output by (p: (1) it is the value in SM(n) (Table 2.2-1) and (2) it is the

value of the output entries in co - (S,Q) of F - Ex(d,k) (Lemna 4.3-1).

Therefore, a should determine that the value in SM(n) is the value of

the output entries of F in w.

It has already been argued (Section 5.1.4) that if f - Ent (F,l)

falls into the duration D(A) of some Assign execution A, then the output

entries of F have value V(Ent (A,2)). If f is in D(A), then, letting
CO)

p - V(f), either:

(a) Ent (A,l) is the last input entry of an Assign execution preceding

f in e, or

(b) there is no input entry to an Assign execution preceding f in I,
p

there is a Copy execution C which has output entries of value p in

co, and Ent (C,l) is in D(A) (or alternatively, C is in the reach

R(A) in w).

A simple inductive argument shows that A initiates before F: In case (a)

above, A must initiate before F by definition of access history, and in

case (b), C must initiate before F (Lemna 5.2-3) and A must initiate

-231-

before C by induction hypothesis. Therefore, A can be identified from the

shortest prefix of w in which F is initiated; this is p - n(S,Aq).

The goal is to determine SM(n) (which requires finding A) from just

a - (S,A). Entry f is not in any access history in a, and so A cannot

be identified as the Assign execution whose duration contains f. Since

is a followed by the input entries to F, however, F is the last execution

initiated in P. Therefore, HO is Ha followed by f; i.e., Ha is the prefix
P p p

of He preceding f. From this and the above, f is in D(A) in w iff:
P

(a) Ent (A,l) is the last input entry to an Assign erecution in H a, or
a p

a
(b) there is no input entry to an Assign execution in H , there is a

Copy execution C which has output entries of value p in w, and C

is in R(A) in a.

This characterization of A still relies on information which may not

be in a: It is possible that f is the first entry in o with value p. If

so, then there is no Assign Input entry in Ha, and the Copy execution Cp'

has no output entries in a. Given a node activation record NAR which is

compatible with w, however, it is known that if any Copy execution has

output entries in co of value p, it is the one which created p, CC(p).

Thus it is possible to identify, from just a and NAR, any Assign execution

A whose duration in ca contains Ent (F,l). It wili be said that this

duration of A "extends to the end of Ha,, (even though Ha may be empty):
p P

Definition 5.2-6 (Durations extending to the end of an access history)

Given any interpretation Int, computation a for Int, and node activation

record compatible with a, let CC be the Creating-Copy function correspon-

ding to that node activation record. Denote by AS the set of Assign

-232-

executions initiated in a, and by SS the set of all Update and Delete

executions initiated in a. Denote by APS the set (Ent (e,l)I eEAS}, and

for each UESS, denote by SPS(U) the set
(Ent a(e,l)j eESS and V(Ent (e,2)) - V(Ent a(U,2))}.

For each AEAS and pointer p, the duration D(A) extends to the end of

Ha iff:
-p
1. Ent (A,l) is the last entry from APS in H, ora p
2. There is no entry from APS in Hpa, and CC(p) is defined and is in

R(A) in a.

For each UESS and pointer p, the duration D(U) extends to the end of

H a iff:
-p
1. Ent (U) is the last entry from SPS(U) in Ha , or

a
a2. There Is no entry from SPS(U) in p, and CC(p) is defined and is in

R(U) in a.

The foregoing argument can be summarized thusly: Given a firing

sequence A starting in S - (r,U), it is desired that the computation

a-(S,A) should determine from U the heap (N,fSM) in S'8. For any

pointer p, let n be 17(p), and assume that there is an Assign execution A

such that D(A) extends to the end of Ha. The following chain of infer-

ences can then be drawn:

There is a firing sequence 4 in which p is the kth firing of Fetch

operator d and p'u pointer input is p

- p outputs the value in SM(n), and there is a computation - (S,)

in which, for Fetch execution F - Ex(dk), Ent (Fl) falls into D(A)

(Lema 5.2-7 below), so that F is in R(A) in

-233-

- F is in R(A) in any computation w of which is a prefix

= if F has output entries in o, their value equals the value output

by (p, and their value equals V(Ent (A,2))
CO

= the value in SM(n) is V(Ent (A,2)) = V(Ent a(A,2)).

SM(n) cannot depend on what firings may or may not occur after A.

Therefore, the conclusion is that if D(A) extends to the end of Ha,

p
then the value in SM(fl(p)) is V(Ent (A,2)).

5.2.2.2 Contents Not Dependent on Executions in ca

It remains now to consider the case of a pointer p for which there

ais no Assign execution whose duration extends to the end of H . In thisP

case, a similar inference can be drawn, with the aid of the argument

advanced in Section 5.1.6:

There is a firing sequence Ap in which p is the kth firing of

Fetch operator d and cp's pointer input is p

in any computation w of which rI(S,Ap) is a prefix and in which

Fetch execution F - Ex(d,k) has output entries, their value equals

the value in SM(n) and their value equals the value in SM0 (m), where

(qm)e 0 and DDW (qp); i.e., p is dynamically descended from q in co.

This determination of the value in SM(n) suffers from a familiar

shortcoming: The goal is to determine SM(n) from just a - T)(S,A), U,

and a node activation record. It is required to discover the particular

q(dom n0 from which p is dynamically descended in w (Lemma 5.2-4 below

proves that q is unique in dom n)'. From Definition 5.1-9, DD(p,p) in

any computation; thus, if p is in dom no, then q - p. Otherwise, if there

are entries in a with value p, then DD (q,p) iff DDa(q,p). But it is

-234-

possible that there are no such entries in a; in this case, it is meaning-

less to speak of p's being dynamically descended in a from any pointer in

dom n Q. Therefore, q cannot be defined as the unique pointer in dom n10

such that DD (q,p).

Fortunately, q can be determined, in an indirect manner, from just

a, U, and the node activation record NAR derived from A and a: Let P be

r)(S,bAp), let NAR' be the node activation record derived from p and P,

and let CC and CC be the Creating-Copy functions corresponding to NARa

and NAR'. The computation P consists of a followed by Ent (Fl), which

entry has value p. If pidom n0, then p is the value in p of the output

entries of Copy execution C - CC (p), and C initiates in a (Lemma 5.2-3).

Since NAR' is compatible with P (Lemma 5.2-2), NAR'(C) is defined and

equal to the pair (p,n), for some n. NAR(C) is also defined and equal to

NAR'(C) (Lemma 5.2-5 below). Therefore, CCa(P) - CCP(p) C.

Thus if p~dom n it is the value in P (hence in a) of the output

entries of the Copy execution CC a(p), which execution can be identified

from just NAR. Let p' be the value of Ent a(CC a(p),l); for any qEdom no,

DD (q,p) iff DD (q,p') iff DD a(q,p'). Therefore, if pidom n0' q is

determined to be the unique pointer in dom, 0 from which V(Ent a(CCa (p),l))

is dynamically descended in a.

The derivation just given is summarized in the following sub-section

as the definition of the heap determined by a computation from an initial

heap and a compatible and consistent node activation record. It is then

proven that, for initial state S - (r,U) and firing sequence L starting in

S, a r(S,A) determines the heap in S' from U and the node activation

record derived from A and a.

-235-

5.2.3 Summary and Validation

The following definition assumes that for each pointer, there is a

unique pointer in dom H0 from which it is dynamically descended; the

validity of this assumption is confirmed imediately after the definition.

Definition 5.2-7 Given any heap U - (N0 , 0 ,SM0) and any interpretation

Int. let a be any computation for Int and let NAR be any node activation

record such that MAR is compatible with a and ran MAR is consistent with

U. Then the heap determined by a from U and NAR, (N ,l ,SM a), is defined

as follows:

n w n0Uran NAR

N a = {n1 3p: (p~n)eH }

Let CC be the Creating-Copy function corresponding to NAR. For each pair

(pn)(Ha , let (q,m) be defined as follows:

a. If (p,n)(g 0, then (q,m).- (pn).

b. If (p,n)A 0, then (q,m) is that unique pair in fl0 such that

V(Ent (CC(p),l)) is dynamically descended from q in a.

Then SM (n) is given by:

a1. If there is an Assign execution A such that D(A) extends to the end

of H pa then the value in SM (n) is V(Ent (A,2)). Otherwise, it is

the value in SM (m).
0

2. For each selector sEZ, if there is an Update execution U such that

D(U) extends to the end of H a, then the pair (s,71 (V(Ent (U,3)))) is
pa a

in SM (n), and is the only pair in SM (n) containing s. If there is

a Delete execution U such that D(U) extends to the end of Hp, then

......

-236-

there is no pair containing s in SM (n). Otherwise, for any node r,

(s,r)ESM a(n) iff (s,r)ESM0 (a).

A
Lemma 5.2-4 Let S - (r,U) be any initial state for an LBS program

P, where U - (N,n,SM). Let A be any firing sequence starting in S. and

let a --n(S,A). Then for any pointer p which is the value of some entry

in a., there is a unique qEdom rl such that DD (qp).

Proof: By contradiction. Assume that

(1) The lemna is false

(2) There is a prefix yf of a such that any pointer which is the value

of an entry in Y is dynamically descended from a unique pointer

in dom. 1, but p - V(f) is dynamically descended from two distinct

pointers in dom H (1)

(3) p is the value of the output entries of a C ny execution

pidom 1l Lemma 5.2-3

(4) pEdom 11 p is not the value of the output entries of a Copy

execution (3)

(5) - p is dynamically descended only from itself Def. 5.1-9

(6) p is dynamically descended from a unique pointer in do.a n (4)

(7) f is the first entry in a with value p (2)

(8) ptdom 17 -* f is an output entry of a Copy execution C, g - Enta(C,1)

strictly precedes f in a (i.e., g is in y), and no other Copy

execution has output entries in a of value p (7)+Lema 5.2-3

(9) Let r - V(g). Then for any qjp, DD (qp) - DD (q,r) (8)+Def. 5.1-9a a

U3JJ~ r..rmr'r -.

-237-

Since r is the value of an entry in y

(10) (2) m r is dynamically descended from a unique pointer in dom U

(9)+(8)

Since (2) - p is dynamically descended from two pointers in dom rT,

(11) (2) m r is dynamically descended from two pointers in dom n (8)+(9)

Since (2) implies a contradiction between (10) and (11), (1) is false, and

the Lemma is true.

The proof that -n(S,A) determines the heap in S'A is by induction on

the lengths of the prefixes of A. Therefore, it is necessary first to

establish that, for any firing sequence ft, the key entities - reaches,

access histories, and node activation records - derived from e and -n(5,0)

are subsets of (i.e., agree with) those derived from ef and r)(S,e0p). This

is easily done for the latter two entities in the following.

Lemma 5.2-5 Let$5 be any initial standard state for an LBS program P, and

let ep be any firing sequence starting in S. Let the last firing in Gp,

(p, be the kth firing of an actor in P labelled d. Let a - I(S,O) and

- r)(S,40). Then

A: For any pointer p, Ha is a prefix of HP, any input entries to Ex(d,k)p p '

which have value p are in RO, and for any entry Ent(e',J)
in HP - a

e' * Ex(d,k) - e' is not a structure operation execution.

B: Let NAR (NAR') be the node activation record derived from e and a

(4 and P). Then for any Copy execution C initiated in a,II
UAR'(C - Al(C.

.... ~ hi..

-238-

Proof:

(1) is a followed by m input entries to Ex(d,k), where p removes m

tokens, followed possibly by input entries to executions Ex(c,n)

where cEDL Alg. 4.3-1+Def. 4.3-1

(2) The set of entries in a whose values are p is a subset of the set

of entries in p whose values are p, and for any j less than or

equal to the number of executions initiated in a, the jth

execution initiated in a is the j th execution initiated in P

(l)+Def. 4.2-6

(3) Ha is a prefix of HP (2)+Def. 5.1-4
p p

(4) Letting Int(P) - (St, IIE), m - In(I(d)) (1)+Defs. 4.3-2+4.3-1

(5) Ex(d,k) is initiated in p, so any input entries to it which have

value p are in HP (1)+(4)+Defs. 4.2-6+5.1-4
p

(6) For any entry f - Ent(e',j) where e' = Ex(c,n), fEHP - Ha m e' is
p p

initiated in P but not in a (2)+Def. 5.1-4

(7) = [e' .Ex(dk) - 1(c) is not a structure operation) (M)+Def. 4.3-2

(8) Let NAR (NAR') be the node activation record derived from e and a

(&p and P). NAR is meaningfully defined Lemma 5.2-2

(9) Let C - Ex(dk) be any Copy execution initiated in a. Then there

are k firings of d in 6 and the kth of these is (d,(pn)), where

(p,n) - NAR(C) (8)+Def. 5.2-4

th
(10) There are k firings of d in O, and the k of these is (d,(p,n)),

so NAR'(C) - (pn) - NAR(C) (9)+Def. 5.2-4

A
The need to show that the reach of an execution in one computation a

is a subset of its reach in another computation P arises in several

iI

-239-

situations in the remainder of the thesis. In two of these, a is strongly

related to p: either it is a prefix or it is a permutation which preserves

initiating order of executions. The weakest relation obtains in the case

that a - il(S,g) and p - T(S',2), where S is any initial modified state,

S' is the corresponding initial standard state, and 2 is any halted firing

sequence starting in S. In the interest of efficiency, these needs are

anticipated here by a single, general proof applicable in all three cases.

A study of the definitions of reach and duration reveals the

following sufficient conditions for the reaches in a to be subsets of

those in P:

1. Every structure operation execution which has input entries in a

has input entries of the same values in .

2. For any two structure operation executions e and e' such that

Ent (e,l) is in an access history in a, Ent a(e',l) precedes Ent (e,l)

in that history iff Ent (e',l) precedes EntP(el) in an access

history in .

3. Every Copy execution which has output entries in either a or P has

output entries of the same value in both computations.

Given the first of these conditions, the second is in turn guaranteed if:

2'. For every structure operation execution e initiated in a,

a. e is initiated in P, and

b. for any other structure operation execution e', e' initiates

before e in a iff it does so in .

If these sufficient conditions hold for a and P, then P is structure-

operation-execution inclusive of a, as defined formally next.

-240-

Definition 5.2-8 For any two computations a and J for the same interpre-

tation Int - (St, /,IE), P is structure-operation-execution inclusive

(SOE-inclusive) of a iff the following are all true (all initiations are

with respect to Int):

1. Any structure operation execution initiated in a is initiated in j.

2. For any two structure operation executions e and e' such that e is

initiated in a, e' is initiated before e in a iff e' is initiated

before e in P.

3. For any Copy execution C initiated in a, C has output entries in

P only if C has output entries in a.

4. For every entry fEa, there is an entry with the same value in

whose transfer has the same source as T(f).

5. For any non-pI execution e and for any J, if there is an entry

Enta (e,j) in a, then there is an entry Ent (eJ) in P with the same

value.

The following lemma states the general result that the reaches in a

are subsets of those in P if either a is a prefix of P or P is SOE-

inclusive of a. Since P is SOE-inclusive of any of its permutations which

preserve initiation order (Lema 5.3-7), this covers all of the cases

cited above. To enable a simple proof by induction on the lengths of

the prefixes of a, a further requirement is imposed: For any pointer p

which is the value in p of the output entries of a Copy execution C, the

initiation of C precedes in P the initiation of any e such that Ent (e,1)

-241-

is in HP. If 3 is causal, this can be simplified to "the first entry inP

P with value p is an output entry of C", since that entry must be preceded

by C's initiating entry. (Any canonical computation meets this require-

ment by Lemm 5.2-3.)

Lemma 5.2-6 Let a and P be any two causal computations for the same

interpretation Int such that either a is a prefix of P or P is SOE-

inclusive of a, and for any pointer p, p is the value of the output

entries in P of a Copy execution C only if the first entry in P with value

p is an output entry of C. Let e be any structure operation execution

initiated in a wrt Int. Then for any Assign, Update, or Delete execution

A, e is in R(A) in P iff e is in R(A) in a only if A is initiated in a.

Proof: (As with the succeeding Lemma and Theorem 5.2-1, the proof of this

is essentially a tedious manipulation of definitions; therefore, all three

proofs may be found in Appendix D.) A
The next lemma verifies the key property claimed for a duration

extending to the end of an access history:

Lema 5.2-7 Let S be any initial standard state, and let 09 be any firing

sequence starting in S in which the last firing is p. Let a - r(S,e) and

7)(S, 4). Let f be any entry in P but not in a whose value is some

pointer p. If f - Ent (e,l) for some execution e, then for any other

execution e', f is in duration D(e') in P iff D(e') extends to the end of

H . Furthermore, if 6 - X, then no durations extend to the end of H

for any p.
AX

-242-

Now it is straightforward (if tedious) to prove formally that the

foregoing construction was correct:

Theorem 5.2-1 Let S - (r,U) be any initial standard state for an LS

program P, and let 2 be any firing sequence starting in S. Let o be (S,q)

and let NAR be the node activation record derived from 2 and w. Then the

heap determined by w from U and NAR is defined and is identical to the

heap in the state S-2.

A
5.3 Validation of the S-S Model

The constraints defining an S-S model were constructed in such a way

that EE(LBS,S) would satisfy them, which would in turn mean that those

constraints do define, in the sense being used here, the set of structure

operations in LBS. The purpose of this section is to confirm the validity

of the construction by means of a rigorous proof, the principle of which

is briefly explained next.

In the five-tuple (V, L, A, In, E) which is EE(LBSS), V, A, and In

obviously meet the requirements imposed on them by the definition of an

S-S model (Definition 5.1-1). All that remains is to show that every job

from every expansion in E satisfies the seven constraints. The first of

these, the Input/Output Type Constraint, is trivial; the second one,

Pointer Transparency, is a straightforward special case which will not be

discussed here (the proofs that these two constraints are satisfied are in

Section 5.3.1 below).

The remaining five constraints all fit one of three patterns:

(1) The values of the output entries of an execution e in any

d-243-

computation W must depend on the value of an input entry in co.to

another, related execution e2.

(2) The output entries of one execution e must be unequal to the

output entries of another, related execution e2 in the same compu-

tation w.

(3) The values of the output entries of two related executions e1 and

e2 in two computations co1 and w2 in the same job must be equal.

In all of these cases, the qualifying relationship between e1 and e2 is

based partially on the actions of which they are executions. The remain-

der of the relation in patterns (1) and (2) may involve the concept of

reach: a constraint of type (1) applies to e1 and e2 only if e1 is in the

reach R(e2) in w, while in pattern (2), e2 may have to fall in no reach.

Those constraints fitting pattern (3) combine reach with the equal-pointer

relation p: the constraints apply only if (a) either eI and e2 are both in

no reach or they both are in identical sets of reaches, and (b) letting

p1 and P2 be the pointer inputs to el and e2' (plWl)p(p2, 2).

Every computation a in a job J is a prefix of a halted computation

which is a permutatioi of a canonical computation wEJ. The approach taken

here is to prove first that the constraints are satisfied by every canon-

ical computation, or pair of canonical computations, as appropriate, in'J;

this step makes extensive use of the just-defined heap determined by a

computation. Then it is shown that, for any two computations a1 and a2

in J, there are two canonical computations w1 and c2 in J such that the

pertinent qualifying relations between executions in a1 and a2 are subsets

of (i.e., agree with) those in w and C 2 , respectively. That is:

I-

-244-

A: For i-1,2, for any execution eI initiated in ai, eI is in reach

R(e2) in ai iff e1 is in R(e2) in wi"

B: For any two pointers p, and P2 ' (P,al)P(P2 a2) - (plV,,)P(p2 'CO 2).

This second step is accomplished with the aid of an intermediate

computation: For 1,2, ai is a prefix of a halted computation P, in J;

there is in turn a canonical computation w t in J which is a permutation

of P, preserving initiation order (and hence is SOE-inclusive of P,).

Implication A holds for ai and P,, and then again for P, and oi, by two

applications of Lemna 5.2-6. Therefore, the major sub-task remaining is

to show that ai is a prefix of P, and ci is SOE-inclusive of P, lead to B.

The third and final phase of the proof is to show that A and B imply

that the constraints, known to be satisfied by ,1 and c2' must hold for

a1 and a2. This is a simple deduction, which may be summarized thusly:

Two executions e1 and e2 are related in a1 and a2 as specified in

a constraint

e and e2 are so related in c 1 and w2 (by A and B)

the input/output entries of e1 and e2 in w1 and w2 have the

dependency dictated by the constraint

- the input/output entries of e1 and e2 in a1 and a2 have the same

dependency (because every entry in ai is in oi) .
Therefore, a1 and a2 satisfy the constraint.

The three steps in the proof that all computations in a job satisfy

the last five constraints may be found in Sections 5.3.2, 5.3.3, and 5.3.4

respectively. In all of the proofs remaining in this chapter, whenever

a program P is given, all initiations, access histories, etc., are with

respect to the interpretation Int(P).

_ _ _ _ _I

-245-

5.3.1 Input/Output Types and Pointer Transparency

It is simple to confirm that all canonical computations from

EE(LBS,S) satisfy the first con3traint:

Lemma 5.3-1 Let S be any initial standard state for any LBS program P and

let 2 be any halted firing sequence starting in S. Then, given

Int(P) = (t,I,IE), r)(S,Q) satisfies the Input/Output Type Constraint.

Proof:

(1) Let w be f(S,2). Then a) is a computation for Int(P) Lemma 4.3-2

(2) For all d and k, dE{"ID","IT","IF"} - Ex(d,k)EIE Def. 4.3-2

(3) For all d and k, dEDL-{"ID","IT","IF"} = Ex(d,k) has no output

entries in co Def. 4.3-1+Alg. 4.3-1

(4) - 1(d) is a pl action Def. 5.1-2

(5) For all d and k, dEDL - the input and output entries of Ex(d,k)

are not constrained by the Input/Output Type Constraint

(2)+(3)+(4)+Const. 5.1-1

(6) For all d, k, and J, dESt-DL = the value of the number-j input entry

to Ex(d,k) in co is equal to the value of the token removed from d's

number-j input arc at d's kth firing in 2 Def. 4.3-2+Alg. 4.3-1

(7) For all d, k, and i, let f be any entry such that T(f) has source

Src(Ex(d,k),i). If dEST-DL, then there is a prefix Ap of 2 con-

taining exactly k firings of d such that tokens of value V(f)

appear on the number-i output arcs of d at the transition from

S'A to S'p Lemua 4.3-1

(8) = tokens of value V(f) are placed on d's number-i output arcs at

the kth firing of d Defs. 2.1-5+2.2-5

-246-

(9) For any entry f(C. f is an input or an output entry of Ex(d,k) where

dESt-Dl. and 1(d) is not a structure or a pl action -. V(f) i

not a pointer (6)+(7)+(8)+Def. 2.2-5

(10) f is an input or an output ontry of Ex(d,k) where dtSt-)l, and 1(d)

in a structure operation - the type of V(f) depends on 1(d) and

I as in Table 2.2-1 (6)+(7)+lDof. 2.2-5

(11) ,, satisfies the Input/Output Type Constraint

(5)+(9)+(lO)+Table 2.2-1+Const. 5.1-l

The proof of the Pointer Tranmparency Constraint is conceptually

simple but procedurally difficult. The constraint is that for any job J

and computation toI .T, if "'2 li any other computation which is identical to

(01 to within pointer values, then s2 o in .1. The proof may be outlined

as follows:

.1 it .1 for some equivalence class E of initial states. There is

some "' EF and some halted firing sequence st 1 starting in " such that

is a prefix of some computation 11 In J1, Construct an initial state

'2' equal to "' and a firing sequence ',), equal to S such that '2 will

be a prefix of some comptation in .1," 2 . Prove that is a halted

firing sequence starting in ::2" Since ,'2 equals S1 , 2 is in E., so ")2 Is

in J"

Proving that Q2 is a halted firing sequence starting in '2' and

verifying that "2 is a prefix of jtJ,:2 both require the following

fact, ftrst asserted in Section 2.4:

' .. ,i

-247-

Theorem 5.3-1 For any two equal standard states S and S for the same
1 2

program P, and any two equal firing sequences 2 starting in S and 22
1 1

starting in S2, S2-22 equals S*2 I. Furthermore, if I is the mapping

under which the conditions of each arc b in P match in S1 and S2, then the

mapping under which the conditions of b in Sl*2l and S2*22 match is

th
IU{(nl,n 2)1 3k: for i1,2, ni is the node in the k Copy firing in 2 }

Proof: (The lengthy proof of this intuitively-correct notion has been

deferred to Appendix D.)
.1A

It is next desired to use this result to prove the following: For

any two equal states S1 and S2 and any two equal firing sequences S2 and

229 if 21 is a halted firing sequence starting in SI, then 22 is a halted

firing sequence starting in S2 . Mere equality of firing sequences says

nothing, however, about the pointer-node pairs in their Copy firings.

While there is much arbitrariness in choosing these pairs, it is not

absolute: 22 is a valid firing sequence starting in S2 - (r,U) only if

each pointer or node in a pair in a Copy firing in 22 appears in no other

pair in a Copy firing or in f7 in U (Lemma 5.2-1); i.e., only if Lne multi-

set of pointer-node pairs in the Copy firings in 22 is consistent with U.

With this added qualification, the assertion can be proven:

Corollary 5.3-1 Let S1 be any standard state for an LS program P, and

let be any firing sequence starting in S Let S be any standard

state equal to Sl. and let 2 be any firing sequence equal to 21" Then

A: Each actor in P is enabled in S2 iff it is enabled in S '

-248-

B: If the multiset AP of pointer-node pairs in the Copy firings in 92

is consistent with the heap in S2 , then 2 is a firing sequence

starting in S2 , and 22 is halted iff 91 is halted.

Proof: Of A.

(1) There is some one-to-one mapping I under which, for each are b in

P, Match((b,S2), I, (b,S)) Def. 2.4-3

(2) For each actor d in P, each input and output arc of d has a token

in S2 iff it has a token in SI (1)+Def. 2.4-2

(3) Enabling conditions for an actor depend only on the presence or

absence of tokens on the actor's input and output arcs Def. 2.1-4

(4) d is enabled in S2 iff d is enabled in S1 (2)+(3)

Prove B by induction on the length of 21.

Basis: 1211 - 0.

(5) 12 2 - 0 Def. 2.4-5

(6) 2 2 is a firing sequence starting in S2 (5)+Def. 2.3-1

Induction step: Assume the Corollary is true for any 21 of length n,

and consider 21 = 6 1l of length n+l, in which the last firing (I is of

the actor labelled d in P.

(7) 22 can be written as e2P2, where P2 is also a firing of d and e2

equals 01 Def. 2.4-5

(8) 62 is a firing sequence starting in S2 ind. hyp.

(9) S20" 2 equals SI-e 1 (7)+(8)+Th. 5.3-1

(10) d is enabled in SI'e 1 , so d is enabled in $2"8 2 (9)+A+Def. 2.3-1

(11) d is not a Copy operator -02 - d (7)+Def. 2.3-1

(12) - 02 2 is a firing sequence starting in S2 (8)+(10)+Def. 2.3-1

-249-

(13) If d is a Copy operator, then (p2
= (d,(p,n)), where p is a pointer

and n is a node (7)+Def. 2.3-1

(14) 0202 is not a firing sequence starting in S2 - (p,n) cannot be

added to IT in going from S2 "02 to S2 " 02 (10)+Def. 2.3-1

(15) - p(dom 17 or nEN in $2"2 Table 2.2-1

(16) - since no state transition ever diminishes IT or N, either p or n

is in a pair either in IT in S2 or in some Copy firing in e2

(i.e., other than 92) Table 2.2-1

(17) - AP is not consistent with the heap in S2 (13)+Def. 5.2-3

(18) 02 P2 is a firing sequence starting in S2 (11)+(12)+(14)+(17)

So it is proven by induction that 22 is a firing sequence starting in S2.

(19) S2*22 equals $1"2 1 Thin. 5.3-1

(20) 21 is not halted iff there is an actor d in P which is enabled in

$l*2 1 Def. 2.3-1

(21) iff there is an actor d enabled in S2 '92 (19)+A

(22) iff 22 is not halted Def. 2.3-1

A
The above theorem and corollary express some fundamental properties

of the equality relations between states and between firing sequences.

These will be applied several times in the remainder of the thesis; the

first such application is in the verification of pointer transparency,

as outlined earlier:

Lemma 5.3-2 Let (IntJ) be any expansion from EE(LBSS). Then every job

JEJ satisfies the Pointer Transparency Constraint.

I

-250-

Proof: Let J be any Job in J, and let a1 be any computation in J. Let

a2 be any computation such that

(1) a2 c a,

'(2) There is a total one-to-one mapping Y over V such that a can be
p2

derived from a by substituting for each entry fa I a similar

entry with transfer T(f), and value V(f), if that is not a pointer,

or Y(V(f)) otherwise (1)+Def. 5.1-3

(3) (IntJ) is the expansion of some LBS program P, and J - JE for some

equivalence class E of initial standard states for P

Defs. 4.3-1+4.3-2

(4) There is an initial standard state S1 (E and a halted firing sequence

a1 starting in S such that a1 is a prefix of some P1 in

is1,21
(3)+Def. 4.3-3

(5) Let S1 W (1,U1), where U1 & (Niil,SM1). Let 112 be such that

(p,n)(fl1 iff (Y(p),n)TJ 2 . Let U2 - (N1 ,fX2 ,SH1l). Then since equal-

ity of components does not concern pointers, for any nEN1,

S2.n i U l .n, where I is the identity mapping Def. 2.4-1

(6) Let r 2 be r, with each token which has a pointer value, p, replaced

with a token of value Y(p). Then for each arc b in P, either b has

no token in both r1 and r2, or b has tokens of identical non-pointer

1value in and or b has tokens of pointer value v and

in r1 and r2 , where f12(v2) = 11(v1), so U2 .'T2(v2) 1 U.ll(vl) (5)

(7) Let S2 - (r 2 ,u 2). Then for each arc b in P,

Hatch((b,S2), I, (b,S1)) (6)+Def. 2.4-2

(8) S2 equals .S, and so it is in E (7)+(3)+Def. 2.4-3

-251-

(9) Let 2 be S2 1with each Copy firing (d,(p,n)) replaced by the firing

(d,(Y(p),n)). Then 2 2 equals 2 Def. 2.4-5

(10) Let AP be the multiset of pointer-node pairs in the Copy firings

in 2 *AP is not consistent with the heap in S2- there is a Copy

firing (d,(pn)) in 22 such that either p or n is in a pair either

in do. or in some preceding firing in S2 (7)+(5)+Def. 5.2-3

(11) - there is a prefix 0(p of 21 in which (p is a Copy firing (d,(p',n))

and [n is in a pair in do. Hl or in some preceding firing in 2

- nis in apair in dom fi or in afiring in 0] and [p is ina

pair in do. n or in some preceding firing in 2 2 m-1 (p - p

(which is unique since Y is one-to-one) is in a pair in do.T H1

or in a firing in 8] (9)+(5)+(2)

(12) -letting S 1* be (r',U') where U' - (N' ,H' SM'), either p'Edom n'

or n(NW Def. 2.3-1

(13) -(p',n) could not be added to n in going from S 16 to S1.4c

Table 2.2-1

(14) -2i1 is not a firing sequence starting in S 1 (11)+Def. 2.3-1

(15) A? is consistent with the heap in S2 (4) +(1l0)+(14)

(16) 2 2 is a halted firing sequence starting inS2

(4)+(8)+(9)+(1O)+(15)+Cor. 5.3-1

(17) Let 8 be any prefix of 2 1 and let e6 be the prefix of 2 2 of the

sme length. Then 62 equals 6i (9)+Def. 2.4-5

(18) S -a equals S,*1 so for each arc b in P,4

Match((b,S2 62),1, (b,S e)), and I is the identity mapping

(8)+(l7)+(7)+(5)+(9)+Thu. 5.3-l4Vef. 2.4-3

-252-

(19) Let b be any arc which holds a token in S1.81. Then b holds a

token in S 2 .8 2 . For 1-1,2, let vIbe the value of the token on

b in S i*(e± Then v 1 is non-pointer *v 2 - v1 (l8)+Def. 2.4-2

(20) Assume that vi, hence v 2, are pointers. Let the heap in Si.0 I be

-, (N ini 9S I), for I - 1,2. Then U 2.n12 (V2) 1 U l'T1 (V 1)

(18)+Def. 2.4-3

(21) nl2(v 2) - i(r11(v1)) - nl1(V 1) (20)+(21)+Def. 2.4-1

(22) v1is in dorn 171(19)+Thm. 2.2-1

(23) v1is in do. nl in S 1 MsV 2 w Y(1) (4)+(21)

(24) v 1 is not in domn f in S there is a Copy firing in 0 1 containing

the ordered pair (v l 1l(v 1)) (22)+Def. 2.3-i

(25) -*there Is a Copy firing in 82 containing (Yv),nl1(v)) which

equals (Y(v I), ,f2(Yv2) (9)+(17)+(21)

(26) Since n12(v 2) is in at most one pair in 2 29 that Copy firing contains

the pair (v 25 l2 (V2)) (15)+Defs. 5.2-3+2.3-1

(27) v 1 is not in dom fl in S 1 M V2 - Y(v 1 (24)+(25)+(26)

(28) v 1 is a pointer = v 2 " Y(v 1) (23)+(27)

(29) For any m, and for 1-1,2, let Apibe the length-u prefix of 9 1'

Then (,and T2are firings of the same actor d and lal- 1&

Then if d is a merge gate, its control input arc holds tokens of

the same value in S 1 ' 1 and S2 'A2 (17)+(19)

(30) T, and T2 remove tokens from the same set of arcsa

(29)+Defs. 2.1-5+2.2-5

(31) The token on b In S 1*01 was on b in S1 1ff there was a token on b

in S and there is no prefix A1cp1 of 61 in which Tremoves a tokenI

from b 1ff there is a token on b in S2 and there is no prefix Ap

-253-

of 02 in which p2 removes a token from b iff the token on b in

S2"02 was on b in S (29)+(30)+Defs. 2.4-3+2.4-2

(32) For each actor d', there are n' firings of d' in 61 iff there are

n' firings of d' in 02 (17)+Def. 2.4-5
2!

(33) Source(b,S2,02) Source(b,S e.) (31)+(32)+Alg. 4.3-1

(34) There is an entry f in w(SI,21) with V(f) - v, and transfer

T(f) - (s,Dst(Ex(d,k),J)) iff there is a prefix 91q,1 of SI in which

1 is the kth firing of the actor labelled d, that firing removes

a token of value v1 from d's number-j input arc b, and

s - Source(b,S1,q1) Alg. 4.3-1

(35) iff there is a prefix 0
2 P2 of 2 2 (of the same length as 61 1L) in

which 2 is the kth firing of d (9)

(36) and that firing removes a token from b (29)+(30)

(37) and that token has value v2 where

2 vI if v1 is not a pointer

2 Y(v1) otherwise (17)+(19)+(28)

(38) and s Source(b,S2 ,02) (17)+(33)

(39) iff there is an entry g in co(S 2 ,22) with V(g) v 2 and T(g) - T(f)

Alg. 4.3-1

(40) There is an entry f in (SI,21) with V(f) - v1 and transfer

T(f) - (s,Dst(Ex(d,k),J)) iff there is such an entry in w(SI,21)

or there is an arc b in P which holds a token in S'2 1 of value vi ,

6 d, k, and j are related to b as in Alg. 4.3-1, and

a Source(b,Sl,21) Alg. 4.3-1

(41) iff there is such an entry in o)(S 2, 2) or there is an arc b which

-254-

holds in S 2 22 a token of value v 2 where

-(v1 if V1 is non-pointer

V2 Y(v) otherwise (34)+(38)+(17)+(9)+(19)+(28)

(42) and d, k, and j are related to b as in Aig. 4.3-1 and

a - Source(b,S 2 ,2 2) (17)+(9)+(33)

(43) iff there is an entry g in i(S 2 92 2) with V(g) - v 2 and T(g) - T(f)

Aig. 4.3-1

(44) pis a permutation of TI(S 1,21) which is causal wrt Int(P), and

4 (Pl) is the reduction of Q, (4)+Def. 4.3-5

(45) There is a permutation P2 Of Tj(S2,22) which can be derived from P1
by replacing each entry f in pwith an entry g such that

T(g) - T(f) and V(g) is V(f), if that is not a pointer, or Y(V(f))

otherwise (44)+(40)+(43)

(46) The prefix of P2 of length Icz1I is a2 (45)+(2)+(4)

(47) Let f be any entry in pl. and let g be the entry in P 2 with

T(s) -T(f). Then f is the initiating entry wrt Int(P) of an

execution e iff g is (45)+Def. 4.2-6

(48) '10 2) - 4("l) (47)+Def. 4.3-4

(49 'tP2) is the reduction of 21, which is the reduction of 22

(48)+(44)+(9)+Def. 2.4-5

(50) Let Y2 g be any prefix of P2 . Then g is an output entry of e m for

the same-length prefix ylf of pl. f is an output entry of e

(45)+Def. 4.2-5

(51) e's initiating entry wrt Int(P) is in yj(44)+Def. 4.2-7

(52) a's initiating entry is in Y2 (47)

-2 55-

(53) 2 is causal with respect to Int(P) (50)+(52)+Def. 5.2-7

(54) Let y2g be any prefix of P2, and let o2 be the prefix of 22 whose

reduction is 4(Y2). Let yif be the same-length prefix of 2I.

Then T(f) - T(g) and 4)(y1) - *(y2) (45)+(47)+Def. 4.3-4

(55) Let 01 be the prefix of 2 whose reduction is -P(yl). Then a, equals

02 and 1e21- loll (54)+Def. 2.4-5

(56) T(g) has destination Dst(Ex(d,k),J) and dIDL - T(f) has the same

destination and diDL - d is enabled in S 101 and if d is a merge

gate and its number-J input arc b is its T (F) input arc, then d's

control input arc has a true (false) token in SI'0 1

(54)+(55)+(4)+Def. 2.4-5

(57) z d is enabled in S2"02 and if d is a merge gate and b is its T (F)

input arc, then its control input arc holds a true (false) token

in S2"02 (8)+(55)+(29)+Cor. 5.3-1

(58) For any firing sequence A2 starting in S2*82 , it is possible to

change the pointer-node pairs in the Copy firings in A2 to derive

an equal firing sequence which is consistent with the heap in

3 1"01 Defs. 2.4-5+5.2-3

(59) For any firing sequence A2 starting in S2 "02, there is an equal

firing sequence a1 starting in SI* I (58)+Cor. 5.3-1

(60) T(g) has destination Dst(Ex(d,k),J), dEDL and d-(c,n) T(f) has

the same destination - letting b be the number-n program output

arc of P, if c - "OD", or else the number-n input arc of c,

there is a token on b in S1"0 and if c is an actor label, there

is no firing sequence starting in Sl0 1 which contains a firing

of c (54)+(55)+(4)+Def. 4.3-5

loop"

-256-

(61) there is a token on b in S2 "02 and if c is an actor label, there

is no firing sequence starting in S2"02 which contains a firing

of c (55)+(17)+(19)+(59)+Def. 2.4-5

(62) P2 is inJS2,22 (45)+(49)+(53)+(54)+(56)+(57)+(60)+(61)+Def. 2.4-5

(63) a2 is in J (8)+(16)+(62)+(46)

This essentially completes the confirmation that the first two S-S

constraints are satisfied in EE(LBSS). The next subsection commences

the proof for the final five constraints.

5.3.2 Canonical Computations

The purpose here is to demonstrate that the remaining constraints

are satisfied by any canonical computation or pair of canonical compu-

tations in a Job; this is the first step in proving that they are

satisfied by any computations.

The Atomic Output and Structure Output Constraints concern the output

entries of an execution I which is in the reach of another execution e2.

The proof, an eloquent testimonial to the utility of the definition of the

heap determined by a computation, has already been outlined at the start

of Section 5.2.

Lema 5.3-3 Let S be any initial standard state for an LS program P, and

let 2 be any halted firing sequence starting in S. Then 7(S,2) satisifes

the Atomic Output Constraint and the Structure Output Constraint (given

lnt(p)).

Proof:

-257-

(1) Let w - TI(S,2) and let f be any entry in w such that T(f) has

source Src(e,i) for any Fetch, Assign, Select, Update, or Delete

execution e - Ex(d,k) and any I. Let Int(P) be (St,I,IE). Then

dESt-DL Defs. 4.3-2+4.3-1

(2) There is a prefix e(p of 9 containing exactly k fixings of d such

that tokens of value V(f) appear on the number-i group of output

arcs of d at the transition from S-9 to S'e(p (1)+Lemma 4.3-1

(3) (must be the kth firing of d in S2 (2)+Defs. 2.1-5+2.2-5

(4) Let the heap in Se be (N,11,SM). Let a be r(S,e) and let NAR be

the node activation record derived from e and a. Then the heap

determined by a from the heap in S and NAR, (N ,T ,Sa), is

defined and is identical to (NJSM) Thm. 5.2-1

(5) Let p be ij(S,9cp), let p be the value of the number-l input to 9,

and let n - 17(p). Then g - Ent (e,l) is in but not in a, V(g)

is p, and there are m input entries to e in p, where m tokens are

removed by (p (3)+(1)+Alg. 4.3-1

(6) V(g) - p is a pointer (5)+(l)+Def. 2.2-5

(7) m = In(I(d)), so e is initiated in P (5)+Defs. 4.3-2+4.3-1+4.2-6

(8) p is a prefix of c, as is a (5)+(2)+Alg. 4.3-1

(9) and w are both causal computations for Int(P) Lemma 4.3-2

(10) For any pointer q, q is the value of the output entries in 4) of a

Copy execution C - the first entry in co with value q is an output

entry of C Leuma 5.2-3

(11) For any Assign, Update, or Delete execution el, efR(e') in w-

eER(e') in 0 (7)-(10)+Lemma 5.2-6

-258-

(12) g is in duration DWe) in (5)+Defs. 5.1-6+5.1-8

(13) .DWe) extends to the end of H C (2)+(4)+(5)+(6)+Lezma 5.2-7
p

(14) pf-dom 11 - do. nl (5)+Thm. 2.2-1
a

(15) eER(A) for Assign execution A =D(A) extends to the end of H a
p

(11)+(13)

(16) the value in SM (n) - SH(n) is v -V(Ent a(A,2))(14)+(4)+Def. 5.2-7

(17) if (p is a Fetch firing A i - 1, then the value placed on the

number-i group of output arcs of d by (p is v (2)-(5)+Table 2.2-1

(18) .if e a Fetch execution A i - 1, then V(f) - v (1)+(2)+(3)

(19) eER(A) for Assign execution A, Ji 2, and (p is a Fetch or Assign

firing =,the value placed on the number-i group of output arcs of

d by (p is the value of the predicate (v*nil)

(15)+(16)+(2)-(5)+Table 2.2-1

(20) ce is a Fetch or Assign execution, i - 2, and V(f) - (v#nil)

(1)+(2)+(3)

(21) co, satisfies the Atomic Output Constraint

(1)+(16)+(18)+(20)+Def. 4.2-6+Table-2.2-1

(22) Assume e is a Select, Update, or Delete execution. Then (P is a

Select, Update, or Delete firing, and the selector input s to (p

equals V(Ent co(e,2)) (l)+(3)+Alg. 4.3-1

(23) eER(D) for Delete execution D - V(Ent w(D,2)) - a (22)+Def. 5.1-8

(24) - there is no ordered pair containing s in 514(n)

(11)+(13)+(14)+(4)+Def. 5.2-7

(25) - if e is a Select execution A i1 1, then V(f) -undef, and if

i1 2, then V(f) -false (l)-(5)+Table 2.2-1

-259-

(26) eER(U) for Update execution U = the ordered pair (s,f(r)) is in

5S(n), where r - V(Ent (U,3))

a

(22)+(ll)+(13)+(14)+(4)+Defs. 5.1-8+5.2-7

(27) - if e is a Select execution A i = 1, then V(f) = V(Ent (U,3)),

and if i - 2, then V(f) = true (1)-(5)+(8)+Table 2.2-1

(28) w satisfies the Structure Output Constraint

(1)+(23)+(25)+(26)+(27)+Def. 4.2-6+Const. 5.1-4

A
Not every execution in a computation falls into a reach; further-

more, even if a First or Next execution e does fall into one or more

reaches, these do not completely determine the set of selectors upon which

e's output entries depend. Under a certain condition, however, the output

entries of two such executions el and e2 must have the same value in two

computations ci and w2 in the same job: if the pointer inputs p1 and P2

to e1 and e2 are such that (pla1)p(p2,o2). This assertion is expressed

in the Initial Structure and the First/Next Output Constraints.

The proof that any pair of canonical computations l and w 2 in a

job satisfies these two constraints proceeds along the following lines:

1. For 1-1,2, wi - '($i,2i)' where S1 and S2 are two initial states

which are equal under some mapping I.

2. The output entries of ei can be related to the content of a partic-

ular node in the heap Ui M (Nini,SMi) in Si . The relationship is

derived from the heap determined by o) from Ui, by applying reason-

ing similar to that just used in Lemma 5.3-3. The particular node

in Ni is ni(qi), where qi is the unique pointer in domn i such that

DD t(qipi (Lemma 5.3-4 below).

-260)--

3. (p'0 1) p(p2'" 2) (q1,'"11) (q 2 °w2) " q, and q2 point to equal
components (under I) of uI and a thus the contents ofl11(ql) And

M2 (q 2) have identical values and selector sots (Theorem 5.1-2).

4. The non-pointer output entries of oI and 02 are identical

(Lema 5.3-5).

Lomma 5.3-4 Let ,' be any initial state for an 1.,S program P. and let the

heap in " be (N.I.SM) . Lot st be any firing sequnco starting in ,,. let ,

be ii(So,), and let @ be any execution of any structure operator (except

Copy). Let p be V(Wnt(e.l)), let q be the unique pointer in dom ni such

that DD (qp). and let n - 11(q). Then the conclusions depicted In

Table 5.3-1 can be drawn about the values of @'a output entries in o.

PL.91: (The reasoning here is so similar to that in Lonmma 5.3-1 that the

proof has been removed to Appendix D.)

Theorem 5.3-2 Let , and , be any two equal initial standard states for

the same 1. program P. Let I be the single one-to-one mapping under

which the conditions in SI and S2 of each arc in P match. For -1.,2, let

the heap tn 5 be U a (NIIi ,smil, let s.1 be any firing sequence starting

in , and lot w be Lo(i, Ji. t p be the equal pointer relation defined

from lnt(P). Assuming that to and to2 are both computations for 1nt(P).

for any two pointers p, and P26

A: (p .100) (p 2, " 2) - (ql,) d 1 (q2 , k2), wheroe, for 1-1,2. q, is the

unique pointer In dom ltI such that DD W (q ,pt).

S: pjEdom Ill, P2 fdom 1l2 , and (pIw(#1)(P 2, "*2)

-261-

If e is a Fetch or Assign execution and is not in a reach, then the

value of Src(e,i) is given below, where v is the value in SM(n).

Type of e i = 1 1 - 2

Fetch v v*nil

Assign 0 v~nil

If e is a Select, Update, or Delete execution and is not in a reach,

then the value of Src(e,i) is given below, where s - V(Ent (e,2)).

If there is an r such that (s,f(r))ESM(n):

Type of e i = 1 1 - 2

Select r true

Update/Delete 0 true

Otherwise:

Type of e i1 i 2

Select undef false

Update/Delete 0 false

If e is a First execution or a Next execution with selector input s,

then the value of Src(e,i) depends just on s and the set S of

selectors defined by:

S - (Sa-sb) USc, where

sa . fs(z] 3m: (s,m)ESM(n)},

S- {SEI. 3Delete D: eER(D) in co and a - V(Ent (D,2))),

and Sc - (sEZj 3Update U: eER(U) in w and a - V(Ent (U,2))}

Outputs of an Execution which is Not in a Reach

Table 5.3-1Ik

-262-

1. There Is an arc of P which, for 1-1.2, holds a pointer r I InS

such that rlI (p I) equals or is reachable from 17 1(r I) in U I

2. rT2 (p2) - I0111 (pl))

3. SM 2(f2(P2)) - I(SM1 (r11(Pl)))

Proof:

(1) Let Int(P) - (ST,I,IE). Then (plica)P(P2cw2)

(1a) There is a source s - Src(e,i) for some eEIE and some i such that

Pi ('2) is the value of s in w 1 (W 2), or

(lb) There are Select executions S 1 and S 2 such that

piis the value of Src(S Il) in w I , 1-1,2,

Sdoes not fall Into a reach in wols 1-1,2,

V(Ent ,)(SI,2)) - V(Ent w2(S 2'2)) and

(V(EntW(S,l),0 1)p(V(Ent (S 2 1)),G 2), or

(1c) 3q~pl such that DDa1 (q~pl) and (qwl)p(p2,w2) Def. 5.1-10

Proof is by induction on the smallest number n of recursive applications

of the above three rules required to derive that (P1,cA1)P(P2 '0)2) . Induc-

tion hypotheses are A with the addition of "The shortest derivation of

(q 9al pq 1)has no more steps than the shortest derivation of

(plO))P(2'w) "and B.

(2) (1a) is true of p1 and p2 - there is a one-step derivation, so U-1

(3) The last step in the shortest derivation is an application of (lb)

or (1c) - there is a pair of pointers q 1 and q 2, not the same as p 1

and p 2, such that it has been derived that (q1,co 1)P(q2 9W 2)

(4) - there is at least one additional step in the derivation, so u > I

Basis: n -1.

-26 3-

(5) (la) is true of p1 and P2 (1)+(3)+(4)

(6) eE{Ex(ID,O), Ex(IT,O), Ex(IF,O)} (5)+(la)+Def. 4.3-2

(7) There is a pointer of value p1 (P2) on the number-i program input

arc of P in S1 (S2) (6)+Alg. 4.3-1

(8) There is an arc b in P which has a token of value p1 (P2) in S1

(S2) and plEdou '1 (P2Edom 2) (7)+Def. 2.2-6

(9) For i1-,2, p- M qiP the unique pointer in dom Ni such that
DD i(qipi) (8)+Def. 5.1-9

(10) (qlcl&)p(q2,(02), and the shortest derivation of this has no more

steps than the shortest derivation of (pl,m,l)p(p 2,'c2) (1)+(9)

(11) Match((b,S1), , (bS 2)) (8)+Def. 2.4-3

(12) U2 .n2 (p 2) I U1 .lni(pl) (8)+(11)+Def. 2.4-2

(13) n 2 (P2) - I(fll(p1)) and SM2 (fl2 (P 2)) - I(SM1 7 (pl))) (12)+Def. 2.4-1

Induction step: Assume that the induction hypotheses are true for any

P1 and P2 if the shortest derivation of (pl,co1)p(p2,cO2) has n or fewer

steps, n > 0. Consider

(14) p1 and P2 for which the shortest derivation has n+l steps

(15) Either (lb) or (1c) is applied as the last step (1)+(2)

(16) (lb) is the last step; i.e., is true of p1 and P2 - since Si is not

in a reach in w,, letting p be V(Ent i (Si,)) and s be

V(Ent (Si,2)) , the pair (sli(p1)) is in SMi(ni(q)) where q is

the unique pointer in dom H such that DD O (qj,pi) (lb)+Lemma 5.3-4

(17) - p1 Edom n, Defs. 2.2-6+2.2-1

(18) - (ql,l)p(q2 ,c2) and the shortest derivation of this has the same

number of steps as the shortest derivation of (pl,l)p(p2 ,s2)
(8)-(10)

-264-

(19) (1c) is the last step - p,'#pl: DD (Pj'pl) and (Pj!c'))P(p 2 ,c*2) -

the shortest derivation of (p j'col)P(P2 c*2) has n steps (14)

(20) - (ql1 wl)p(q 2 'w2)' where qiIs the unique pointer in dom I', such

that DD (q1,P') and DD (q~p) and the shortest derivation of

this has no more than n steps Ind. hyp. A

(21) - DD~ (q1, 1 (19)+Def. 5.1-9

(22) -(qlc&o1)p(q 2 (02)' where qiis the unique pointer in dom n, such

that DD~ (qi~pi), and the shortest derivation of this has no more

steps than the shortest derivation of (1 c)pp, 2) (20)+(14)

(23) A for p1 and P2 (15)+(16)+(18)+(19)+(22)

(24) (1c) is true of p1 and P2 '0 3P '*pl: DD ,(pl'pl) -p 1 is the value

of the output entries of a Copy execution in ~lDef. 5.1-9

(25) p1Adom l - B is vacuously true Lemm 5.2-3

(26) (lb) is the last step applied - letting pi be V(Ent 0) (Si.l)) and s

be V(Ent 0,(Si.2)), the pair (snI p) is in SM,(Tli(qj1)). where

q is the unique pointer in dom n I such that DD 0,(qi',pi) and

(p1'')l)(P2'(02)(16)(l£

(27) -the shortest derivation of (p lc 1)p(P2 ca2) consists of an appli-

cation of (ib) following the shortest derivation of

(p C Pp"2,which has n steps (1)+(14)

(28) - (qj,co 1*)p(q2' -02) and the shortest derivation of this contains no

more steps than the shortest derivation of (' cl (2 &2

(26)+iod. hyp. A

(29) -the shortest derivation of (qi 0)1)p(q 2 Ca 2) has n or fewer steps

(27)

(3)- SM 2(n 2 (q21)) I(Sm 101(qj))), and there is an arc of P which holds

-265-

a pointer ri in S i such that fi(qj) equals or is reachable from

1i (ri) in Ui (26)+ind. hyp. B

(31) -since (s,fi(p 1))ESM i(fl(qi))9 n2(P2) I(fl1 (pl)) and 11(pi) is a

successor of nfl(q,) (26)+Defs. 2.4-1+2.2-2

(32) A U2.rn2(r2) 1 Ul.rl(r1) Defs. 2.4-3+2.4-2

(33) - l(p,) is reachable from r1i(r 1) (30)+Def. 2.2-2

(34) - SM2(I(1(p))) I(SMI(1 1(P1))) (32)+Def. 2.4-1

(35) - SM2 f 2(p2)) - I(SM 1(W1 (Pl))) (31)

(36) B for p1 and P2 (15)+(24)+(25)+(26)+(30)+(31)+(35)
A

Lemma 5.3-5 For any LBS program P, let S1 and S2 be any two equal initial

standard states for P. For 1-1,2, let 51 be any halted firing sequence

starting in Si and let wc - Y(SiQi). Then, given Int(P), the pair

consisting of w and w2 satisfies the Initial Structure Constraint and

the First/Next Output Constraint.

Proof: (The proof of this is simply a detailed expansion of the outline

given on page 259, and so has been deferred to Appendix D.)

The final constraint is the Unique Pointer Generation Constraint.

Briefly, this states that the pointer output of a Copy execution in a

computation co must be different from the pointer output of any input

execution (that is, one in 1E), any other Copy execution, and any Select

execution which does not fall into a reach in w.

Lemma 5.3-6 For any initial standard state S for any LS program P, and

for any halted firing sequence 2 starting in S, 1 (S,g) satisfies the

Unique Pointer Generation Constraint.

-266-

Proof:

(1) Let w T(S,2). Then w is a computation for Int(P) - (St,/,IE)

Lemma 4.3-2

(2) Let p be the value in o of the output entries of any Copy execution

C. Let the heap in S be (NI,SM). Then p~dom TI and no other

Copy execution has output entries in w of value p (1)+Leuma 5.2-3

(3) For any pointer p', p' is the value of the output entries of any

execution e(IE - eE{Ex(ID,O),Ex(IT,O),Ex(IF,O)} (1)+Def. 4.3-2

(4) = p' is on an arc of p in S Alg. 4.3-1

(5) pf is in dom n = p'*p (2)+Def. 2.2-6

(6) For any pointer p', p' is the value of the output entries in CO of a

Select execution S which does not fall into a reach = (sj(p'))

is in SM(fl(q)) for some qEdom T (2)+(l)+Leama 5.3-4

(7) - 1(p')EN - p'Edom 17 , p'*p (2)+Def. 2.2-1

(8) c satisfies the Unique Pointer Generation Constraint

(2)+(3)+(5)+(6)+(7)+Const. 5.1-7

A
5.3.3 The Qualifying Relationships

This subsection provides the results necessary to complete the second

step of the proof that all computations in a job satisfy the final five

constraints. Recalling the comprehensive outline provided at the start of

Section 5.3, the goal here is to prove that for any two computations a1 and

a2 in a job J, there are canonical computations w1 and co2 in J such that:

A: For 1-1,2, for any execution e initiated in a., e1 is in R(e2) in

Iff e is in R(e2) in cOi.

5: For any two pointers p1 and P2' (pl'al)P(P2 a 2) "(Pl'cl)P(P292)"

-267-

For i-l,2, the appropriate oi is found from ai as follows: Every a is a

prefix of some p in J~2, where S is an initial standard state and 2 is

a halted firing sequence starting in S; in turn P is a permutation of

-

A follows from two invocations of an earlier, general result relating

reaches in a pair of computations (Lemma 5.2-6). Two requirements must be

met by any pair y and 6 before this result can be applied to them. First

is that either y is a prefix of 6 or 6 is SOE-inclusive of y. The pi

selected above has ai as a prefix, and it is easily confirmed that co is

SOE-inclusive of Pi (Lemma 5.3-7 below). The second requirement is that

For every pointer p, p is the value in 6 of the output entries of a

Copy execution C = the first entry in 6 with value p is an output

entry of C.

This has already been established for all canonical computations 8, such

as w, (Lemma 5.2-3). It is here proven for 6 - P1 by an indirect, two-

step process. First it is shown to-be true for any causal computation

which satisfies the Input/Output Type, Structure Output, and Unique

Pointer Generation Constraints (Lemma 5.3-8). Then it is shown that,

since wi is known to satisfy these constraints, any computation of which

it is SOB-inclusive, including P,, must satisfy them as well (Lemma 5.3-9).

(The reason for this two-part development is that the first lemma is in a

form which can be used several times in Chapter 6.) With these prelimin-

aries, Lenma 5.2-6 can be applied first to ai and p,, then to Pi and w

to yield A.

Finally, Lemma 5.3-10 displays the simple manipulations of definitions

needed to prove that A implies B.

-268-

Lemma 5.3-7 Let S be any (standard or modified) initial state for an LS

program P, and let 2 be any halted firing sequence starting in S. Let (0

be T)(S,2) and let p be any computation in J.. Then w is SOE-inclusive

of p.

Proof:

(1) p is a causal permutation of co such that 4(p) is the reduction of 2

Def. 4.3-5

(2) is also in and 4'(c) is the reduction of g Lemma 4.3-3

(3) c is a computation for Int(P), so p is as well

(1)+Lesma 4.3-2+Def. 4.2-6

(4) Let Int(P) be (St,1,IE), and let e - Ex(d,k) be any execution in

which /(d) is a structure operation. Then d(St-DL Def. 4.3-2

(5) e is initiated in p z there are In(I(d)) input entries
to e in p

= there are ln(1(d)) input entries to e in ca e is initiated in c

(1)+Def. 4.2-6

(6) Let NDE be the set of executions NDE = {Ex(d,k)J dESt-DL). For any

Ex(d,k) in NDE which is initiated in p, the initiating entry to e

is preceded in both p and w by the initiating entry to exactly

k-i other executions of d (4)+(2)+(5)+Cor. 4.3-1

(7) For any n 5 It(p)I - 14,(), the nth execution in NDE to initiate in

P is Ex(d,k) iff the nth firing in 4,(p) is a firing of d and is

preceded by exactly k-i other firings of d; i.e., is the kth

firing of d (l)+(2)+(6)+Def. 4.3-4

(8) iff the nth firing in f(w) is the kth firing of d (1)+(2)

(9) 1ff the nth execution in NDE to initiate' in (a is Ex(d,k) Def. 4.3-4

-269-

(10) Let e and e' be any two distinct structure operation executions

such that e is initiated in P. Then both e and e' are in NDE

(4)+(6)
th

(11) e' initiates before e in p iff e is the n execution in NDE to
th

initiate in p, n I:(5)j, e' is the m ,and m< n iff e is the
th th
n execution in NDE to initiate in u), n 14(j) e' is the m

and m < n iff e' initiates before e in co (10)+(7)+(9)

(12) Any execution which has output entries in co has output entries in .

For every entry fEP, there is an entry with the same value in o

whose transfer has the same source as T(f). For any execution e

and for any J, if there is an entry Ent (ej) in P, then there is

an entry Ent (e,j) in o) with the same value (1)

(13) co is SOE-inclusive of P (3)+(4)+(5)+(10)+(11)+(12)+Def. 5.2-8

A
Lemma 5.3-8 Let w be any causal computation for interpretation (St, I,IE)

which satisfies the Input/Output Type, Structure Output, and Unique

Pointer Generation Constraints. Then:

A: For any pointer p which is the value of an entry in w, the first

entry in w with value p is an output entry of an execution which

either is in IE, is a Copy execution, or is a Select execution

which is in no reach in co.

B: For any pointer p which is the value in w of the output entries of

a Copy execution C, the first entry in w with value p is one of

those output entries of C.

C: For any structure operation execution e initiated in w and for any

-270-

Assign, Update, or Delete execution A, e is in reach R(A) in w

A is initiated before e.

Proof: By induction on the lengths of the prefixes a of w. Induction

hypotheses are that A and B are true for any p which appears as the value

of an entry in a, and C is true for any e initiated in a.

Basis: lal - 0. A and B are vacuously true.

(1) e - Ex(d,k) is a structure operation execution - In(/(d)) > 0 =

e is not initiated in a Defs. 5.1-1+l,.2-6

Induction step: Assume the induction hypotheses are true for any prefix

of length n, 0 <n< 1 o, and consider prefix af of w of length n+l.

(2) Let p be any pointer which is the value of an entry in af. If p

is the value of an entry in a, then A and B hold for p ind. hyp.

(3) Assume that p is not the value of any entry in a. Then f is the

first entry in co with value p (2)

(4) Let e be the execution of which f is an output entry. Either e is

in IE, e is a pI execution, or e is a Copy or Select execution

(2)+(3)+Const. 5.1-1

(5) e is initiated in a (4)+Def. 4.2-7

(6) e is a pI execution = 3J: V(Ent(e,j)) - p (3)+(4)+Defs. 4.2-6+5.1-2

(7) - there is an entry in a with value p (5)+Def. 4.2-6

(8) e is not a pI execution (6)+(7)+(3)

(9) e is a Select execution which is in a reach in o - e is in the reach

of an Update execution U and V(Ent(U,3)) - p

(3)+(4)+Def. 6.1-6+Const. 5.1-4

(10) - U is initiated before e in w (5)+Def. 4.2-6+ind. hyp. C

-.-- -

-271-

(11) U is initiated in a, so Ent(U,3) is in a (5)+Def. 4.2-6

(12) e is not a Select execution which is in a reach in w (9)+(11)+(3)

(13) e either is in IE, is a Copy execution, or is a Select execution

which is in no reach in w (4)+(8)+(12)

(14) p is the value in w of the output entries of a Copy execution C

p is not the value in w of the output entries of an execution

which either is in IE, is a Copy execution other than C, or is a

Select execution which is in no reach in w Const. 5.1-7

(15) = e = C (3)+(4)+(13)

(16) A and B are true for any p which is the value of an entry in af

(1)+(3)+(13)+(4)+(14)+(15)

(17) Let e be any structure operation execution initiated in af. e is

initiated in a = C is true for e ind. hyp. C

(18) Assume f is the initiating entry of e in co. Let A be any Assign,

Update, or Delete execution such that eER(A) in w. Then Ent(e,l)

is in duration D(A) in w Defs. 5.1-6+5.1-8

(19) Either

(19a) Ent(A,l) precedes Ent(e,l) in the same access history in co, or

(19b) Ent(e,l) is in access history Hu) for some p which is the value of
p

the output entries in w of a Copy execution C, and Ent(C,1) is in

D(A) in w (18)+Defs. 5.1-5+5.1-7

(20) (19a) - A initiates before e in c Def. 5.1-4

(21) (19b) = CER(A) Defs. 5.1-6+5.1-8

(22) A There is an entry in af with value p (18)+Defs. 5.1-4+4.2-6

(23) A the first entry with value p in co is an output entry of C

(19b)+(16)

A o"

-272-

(24) - there is an output entry of C in af (22)

(25) - C is initiated in a Def. 4.2-7

(26) A is initiated before C in a (24)+ind. hyp. C

(27) A is initiated in a (25)+Def. 4.2-6

(28) A is initiated before e in w (18)+Def. 4.2-6

(29) C is true for any e initiated in af (17)-(21)+(28)A
Lemma 5.3-9 Let a and P be any two causal computations for the same

interpretation (St,/,IE) such that p is SOE-inclusive of a. If P satisfies

the Input/Output Type, Structure Output, and Unique Pointer Generation

Constraints, then a satisfies these constraints.

Proof:

(1) Let f = Ent a(e,j) be any entry in a, and let e - Ex(d,k). 1(d)

is a pI action = the types of the input entries of e are not

constrained Const. 5.1-1

(2) /(d) is not a pI actor and e has input entries in a = for all J,

V(EntP(eJ)) a V(Ent (e,J)) (1)+Def. 5.2-8

(3) The type of V(Ent (eJ)) depends on /(d) and j as in Const. 5.1-1,

so the type of V(Ent (e,j)) depends on 1(d) and j as in
a

Const. 5.1-1 (2)

(4) Let the source in T() be Src(e',i), where e' = Ex(d',k'). Then

there is an entry g in p such that V(g) = V(f) and T(g) has the

same source; i.e., the value of Src(e',i) is the same in a and

(1)+Defs. 5.2-8+4.2-6

(5) The type of V(g) depends on 1(dt) and i as in Const 5.1-1, so the type

of V(f) depends on 1(d') and i as in the constraint (4)

.r "

-273-

(6) a satisfies the Input/Output Type Constraint(l)+(3)+(5)+Const. 5.1-1

(7) For any pointer p, p is the value in P of the output entries of a

Copy execution C - the first entry in P with value p is one of

those output entries of C Lemma 5.3-8

(8) For any Update or Delete execution U, for J=2,3, if there is an

entry Enta(U,j), then there is an entry EntP(U,j), and they have

the same value Def. 5.2-8

(9) For any Select, Update, or Delete execution e initiated in a,

eER(U) in a iff eER(U) in P (7)+Lemma 5.2-6

(10) eER(U) in a - eER(U) in P - the values of Src(e,l) and Src(e,2) in

P depend on V(Ent (U,2), and possibly on V(Ent (U,3), as in

Constraint 5.1-4 (9)+Const. 5.1-4

(11) - the values of Src(e,l) and Src(e,2) in a depend on V(Enta(U,2)),

and possibly on V(Ent a(U,3)), as in the constraint (8)+(4)

(12) a satisfies the Structure Output Constraint (10)+(ll)+Const. 5.1-4

(13) Let C be any Copy execution initiated in a, and let p be the value

of C's output entries in a (if any). a does not satisfy the

Unique Pointer Generation Constraint - there is an execution e*C

whose output entries have value p in a and e either is in IE, is

a Copy execution, or is a Select execution which is in no reach

in a Const. 5.1-7

(14) - C and e have output entries of value p in (1)+(4)+Def. 4.2-5

(15) A if e is a Select execution, it is not in a reach in P (9)

(16) - P does not satisfy the Constraint Const. 5.1-7

(17) a satisfies the Unique Pointer Generation Constraint (13)+(16)

A

-274-

Leuma 5.3-10 Given an interpretation Int - (St, J,IE), let p be the equal

pointer relation defined from Int. Let al, a2, W1. and w2 be four causal

computations for Int such that either for 1-1,2, ai is a prefix of a

permutation of wI, or for 1-1,2, wi is SOE-inclusive of ai" If

(1) for 1-1,2, for every structure operation execution e initiated before

the last entry in a., and every Assign, Update, or Delete execution

A, e is in the reach R(A) in ai iff e is in R(A) in wi'

then for any two pointers p1 and P29 (pI'al)p(P2 a 2) (PI'wI)p(P2'w2)"

Proof:

(2) aI is a prefix of a permutation of a)
= every entry in ai is in i

(3) For every execution e which is in IE or is a structure operation

execution, for any integer j and any value v, there is an entry

f(ai such that T(f) has source Src(e,j) (destination Dst(e,j)) and

V(f) - v - there is an entry g in ti such that T(g) has Rource

Src(e,j) (destination Dst(e,j)) and V(g) - v (2)+Def. 5.2-8

(4) (pl,al)p(p2 ,a 2) iff

(4a) there is a source s - Src(ei), for some e(IE and some i, such that

P1 02) is the value of s in a1 (a2), or

(4b) there are Select execution S1 and S2 such that

Pi is the value of Src(Sil) in at, i1,2,

Si is not in any reach in ai, 1-1,2,

V(Ent a($1,2)) - V(Enta 2(S2,2)), and

(V(Ent l(S19 l)),aI)p(V(Enta2(S2,1)),a2), or

.a.) thore is a pointer q#p1 such that DDa (qpl) and (q,al)p(P 2,a2)

Def. 5.1-10

-275-

The proof of the Lemma is by induction on n, the number of recursive

applications of the above three rules necessary to derive (pl,al)p(p2,a2).

(5) (4a) is true of p1 and P2 - there is a one-step derivation, so n - 1

'(6) The last step in the shortest derivation is an application of (4b)

or (4c) = there is a pair cf pointers qI and q2' not the same as

P1 and P2 1 such that it has been derived that (q1 ,cL,)p(q2,q2)

(7) - there is at least one additional step in the shortest derivation,

so n > 1

Basis: n - 1

(8) (4a) is true of p1 and P2 (4)+(6)+(7)

(9) All entries in aI (a 2) whose transfers have source s have value

P1 (P2) (4a)+Def. 4.2-6

(10) All entries in w I (W2) whose transfers have-source s have value

P1 (p2) (9)+(4a)+(3)

(11) (p1, 1)p(p2 ,w2) (10)+Defs. 4.2-6+5.1-10

Induction step: Assume that the Lemma is true for any p1 and P2 if the

shortest derivation of (p1,a1)p(p2,a2) has n steps, n>O, and consider

(12) p1 and P2 for which the shortest derivation has n+l steps

(13) Either (4b) or (4c) is applied as the last step in this (4)+(5)

(14) (4b) - Si has output entries in aI Def. 4.2-6

(15) - Si is initiated before the last entry in ai Def. 4.2-7

(16) A p is the value of Src(Si,l) in wit for io1,2 (3)+Def. 4.2-6

(17) - Si is not in any reach in a) (15)+(l)

(18) A V(Ent I(S1,2)) - V(Ent 2(S2,2)) (3)+Def. 4.2-6

(19) Letting q, - V(Ent (Si.1)) - V(Ent (SiMl)), 1-1,2, (4b)
a i

hi

-276-

(qla,) p(q2 9a2) = a shortest derivation of (Plval)p(P2,a2) consists

of a shortest derivation of (ql,al)p(q2,a2) followed by the

application of (4b) (3)+(13)+Def. 4.2-6

(20) - (ql,1s)P(q2 'w2)
(12)+ind. hyp.

(21) (4b) - (p 1 l')p(P 2 ,co2) (16)-(20)+Def. 5.1-10

(22) For any pointer q pl, DDal(q'Pl)
= there is a sequence of Copy

executions C1,...,C such that V(Ent al(Cl,))- q, p1 is the value

of the output entries of C , and if m > 1, then for ji2,...,m,

V(Ent (C 1)) is the value of the output entries of Cj_lDef. 5.1-9

(23) * since each of C1,...,Ci has input and output entries of the same

value in c1' DD (qpl) (3)+Def. 5.1-9

(24) (4c) J 3q*Pl: DD (qpl) and (q,a 1)p(p2 ,a2) (22)+(23)

(25) - a shortest derivation of (pl,al) p(p2.c2) consists of a
shortest

derivation of (q,al)p(p 2 a2) followed by an application of (4c)(13)

(26) - !q,col)p(p 2
,ci 2) (12)+ind. hyp.

(27) (4c) - (p ,lsl)p(p 2 ,w 2) (24)+(26)+Def. 5.1-10

(28) (12) - (p1 .wo)p(p 2 ,(O2) (13)+(21)+(27)

A

5.3.4 Conclusion

This subsection concludes the proof that all computations
in a Job

satisfy the last five constraints. The third and final step-in that proof

has been explained at the start of Section 5.3; it is here repeated

precisely as:

Lmma 5.3-11 Lot S1 and S2 be any two equal initial standard states for

the same LBS program P and let 9 and 2 be any two halted firing sequences

-277-

starting in S1 and S2 respectively. Let C", -r(S1,S21) and 2 = 1(S2'22) '

and assume that these are computations for Int(P). Let aI and a2 be

any two causal computations for Int(P) and let pbe the equal pointer

relation defined from Int(P). If, given Int(P),

(1) for i=1,2, for any structure operation execution e, e is initiated in

ai.le is initiated in wi' for every integer J, if there is an entry

Ent (e,j) in ait then there is an Ent (e,j) in w with the same

value, and if there is an entry in ai whose transfer has source

Src(e,j), then there is an entry in o), with the same value whose

transfer has source Src(e,j),

(2) for i=1,2, for every structure operation execution e initiated in ai

and any Assign, Update, or Delete execution A, eER(A) in ai iff

eER(A) in co, and

(3) for any pointers p1 and P2 9 (Pal)P(P2,a2) - (Pl1 wI)P(P2'w 2)'

then ai satisfies the Atomic Output, Structure Output, and Unique Pointer

Generation Constraints, and the pair .consisting of aI and a2 satisfies the

Initial Structure and the First/Next Output Constraints.

Proof: (Since the earlier explanation is conceptually complete, the details

of the proof have been relegated to Appendix D.) A

All of the elements presented in this section are now brought

together, to verify that:

Theorem 5.3-3 EE(LBsS) is a Structure-as-Storage model.

Proof:

-278-

(1) EE(LBS'S) - (V, L, A, In,E) is an entry-execution model Thm. 4.3-1

(2) There is a distinct subset V of V containing pointers
p

Defs. 2.2-1+4.3-1

(3) The action domain A contains the following eight actions, and In

assigns to each the indicated input arity: Fetch(l), First(l),

Next(2), Select(2), Copy(l), Assign(2) Update(2), and Delete(2)

Defs. 2.2-3+2.2-5+4.3-1

(4) Let (Int,J) be any expansion in E. Then there is an LBS program P

such that this is an expansion of P Def. 4.3-1

(5) Let J be any job in J. Then J is a job for Int (1)+(4)+Def. 4.2-3

(6) Int - Int(P) and there is an equivalence class E of initial

standard states for P such that J - J (4)+Def. 4.3-2

(7) Let S1 and S2 be any two states in E, and let 91 and 22 be any two

halted firing sequences starting in S and S2 . For i-1,2, let

be any computation in J sis . Then Pi is a causal permutation of

- (si.2i) Def. 4.3-5

(8) "1 is also in 3s5tol and 4(coi) is the reduction of 2, Lima 4.3-3

(9) o), and P, are both in JE hence both are computations for Int-Int(P)

(7)+(8)+(5)+(6)+Defs. 4.3-3+4.2-3

(10) co, is SOE-inclusive of Pi (7)+Lea.a 5.3-7

(11) wt is causal (7)+Lemma 4.3-2

(12) co satisfies the Input/Output Type Constraint, given Int(P)

(7)+Lemma 5.3-1

(13) co satisfies the Structure Output Constraint, given Int(P)

(7)+Leuma 5.3-3

-279-

(14) co satisfies the Unique Pointer Generation Constraint, given Int(P)

(7)+Lemma 5.3-6.

(15) For any pointer p, p is the value of the output entries in W1 of a

Copy execution C = the first entry in oi with value p is one of

those output entries of C (11)+(9)+(12)-(14)+Lemma 5..3-8

(16) For any structure operation execution e initiated in Pi, and any

Assign, Update, or Delete execution A, eER(A) in t eER(A) in Qi

(7)+(ll)+(9)+(lO)+(15)+Lenma 5.2-6

(17) Pi satisfies the Input/Output Type, Structure Output, and Unique

Pointer Generation Constraints given Int(P)

(7)+(9)+(10)-(14)+Lemma 5.3-9

(18) For any pointer p. p is the value of the output entries in P, of the

Copy execution C z the first entry in, with value p is one of

those output entries of C (7)+(9)+(17)+Lemma 5.3-8

(19) Let ai be any prefix of Pi. Let yf be any prefix of at and let e be

the execution of which f is an output entry. Then yf is a prefix

of P,, so e is initiated in y (7)+Def. 4.2-7

(20) a1 is causal (19)+Def. 4.2-7

(21) ai is in JE, and so is a computation for Int(P)

(19)+(7)+(5)+Defs. 4.3-3+4.2-3

(22) For any structure operation execution e - Ex(d,k) initiated in at

and any Assign, Update, or Delete execution A, e(R(A) in at 1ff

eER(A) in p1 (20)+(7)+(21)+(9)+(19)+(18)+Lemma 5.2-5

(23) A there are In(I(d)) input entries to e in ai , hence in P., so e is

initiated in (19)+Def. 4.2-6

L i n - -. ..

-280-

(24) eER(A) in ai iff eER(A) in co (16)

(25) Let f be any entry in ai. Then f is inp i (22)

(26) Let T(f) be (Src(Ex(d,k),i), Dst(Ex(d',k'),J)). Constraint 5.1-1

dictates, one or two times, what the type of V(f) should be: once

based on 1(d) and i, and again based on 1(d') and j Const. 5.1-1

(27) Both of the types so dictated match the type of V(f) (25)+(17)

(28) ai satisfies the Input/Output Type Constraint (25)+(21)+Const. 5.1-1

(29) J satisfies the Pointer Transparency Constraint (4)+(5)+Lemma 5.3-2

(30) Let e be any structure operation execution. If e is initiated in ai

there are In(1(d)) input entries to e in ai, so the same entries

are in Pi and oi, so e is initiated in w V For every integer J,

if there is an entry Ent a(e,j) in a,, then there is an entry

Ent W(e,J) in wi with the same value. If there is an entry in a

whose transfer has source Src(e,j), there is one in oi with the

same value whose transfer has the same source (25)+(7)+Def. 4.2-6

(31) Let p be the equal pointer relation defined from Int. For any two

pointers p1 and p2, (pla l)p(P 2,a 2)

(20)+(7)+(21)+(9)+(19)+(22)+Lema 5.3-10

(32) (PI, I)P(P2 ' 2) (7)+(ll)+(9)+(0)+(16)+Lemma 5.3-10

(33) Given Int(P), aI satisfies the Atomic Output, Structure Output, and

Unique Pointer Generation Constraints, and the pair consisting of

a and a2 satisfies the Initial Structure and First/Next Output

Constraints (7)+(9)+(20)+(21)+(30)+(22)+(24)+(31)+(32)+Leua 5.3-11

(34) EE(L3 s,S) is an S-S model

(l)-(6)+(7)+(19)+(28)+(33)+(29)+Defs. 4.3-3+5.1-1

Q.E.D.

-281-

Chapter 6

A Generalized Determinacy Proof

A novel method for guaranteeing determinacy of LBS programs has been

presented in Chapter 3. Its key feature is the withholding of read

pointers (p,R) output by a Select firing so long as there are write

pointers (p,W) on arcs of the program. It was argued that this scheme

guarantees freedom from conflict; the purpose of this chapter and the

following is to show that such freedom implies determinacy, and, in turn,

functionality.

The entry-execution model was introduced in Chapter 4 as being

particularly well-suited to the statement and proof of assertions about

specific operations. Chapter 5 has illustrated its use in concisely

describing the operations characterizing a Structure-as-Storage language.

The current chapter presents, in entry-execution terms, a set of seven

Determinacy Axioms for an S-S model, and proves that they are sufficient

to guarantee determinacy. Chapter 7 then shows that the model EE(LDM)

satisfies these axioms, hence is determinate, and that this implies the

functionality of LD programs run on the modified interpreter.

This chapter commences with the formal definition of determinacy in

an entry-execution model (Section 6.1). The Determinacy Axioms are pre-

sented next (Section 6.2). The final two sections contain the proof that

the Axiom are sufficient for determinacy in any S-S model.

-- 4

-282-

6.; The Definition

A rough definition of determinacy in the standard model of data flow

has already been given, in Section 3.1.2 (q.v.). With the elegant vocab-

ulary of the entry-execution model, this is easily translated into a

more concise statement.

Determinacy is a property of individual programs in a data-flow

language. To each such program P there corresponds an expansion (Int,J)

in an entry-execution model of that language. Therefore, in that model,

determinacy is a property of expansions. Program P is determinate iff,

for each equivalence class E of initial states for P, any two firing

sequences starting in any states in E satisfy the five Determinacy

Assertions. Each such equivalence class E corresponds to a single job

JE in J. A job is just a set of computations, which are the entry-

execution analogs of firing sequences. Therefore, an expansion is

determinate iff, for each job JEJ, any two computations in J satisfy

corresponding conditions.

The first and fourth of the Determinacy Assertions together state:

For any two actors d and d2 and any integers i, J, k, and m, there is a

kth firing of d and an mth firing of d2, and a value is transferred from

the number-i output of the latter to the number-j input of the former, in

firing sequence 21 iff the same is true of firing sequence 92 The

corresponding condition on two computations w1 and c2 is: There is an

entry with transfer (Src(Ex(d2,m),i), Dst(Ex(d1 ,k),J)) in co iff there

is an entry with that transfer in w

-283-

The second and third Determinacy Assertions concern the value of the

number-J input to the kth firing of an actor d. These translate directly

into statements about the values of the entries in ca and w2 whose

transfers have destination Dst(Ex(d,k),J) (of which there is at most one

per computation). To wit: There is a one-to-one map F over pointers such

that, for any entries f in co and g in o2 with T(g) = T(f),

a. V(f) is not a pointer iff V(g) is not a pointer,

b. if those values are not pointers, then they are the same, and

c. if those values are pointers, then F(V(f)) is defined and equal

to V(g).

The final Determinacy Assertion is of the equality of the reaches in 21

and 2 2 of each Assign, Update, or Delete firing. The concept of reach

has already been refined and translated into entry-execution terms in

Chapter 5. The requirement for equal reaches is combined with those

translated above to form:

Definition 6.1-1 An expansion (Int,J) is determinate iff for each job

JEJ, any two computations in J are equivalent under some one-to-one

pointer correspondence.

A pointer correspondence F is any map over pointers

F: V -+V
p p

Two computations o1 and c2 are equivalent under pointer correspond-

ence F 1ff the following are all true:

1. The sets of transfers of the entries in a), and w2 are identical.

-284-

2. For any two entries f(a and g(E2 such that T(g) T(f),

a. V(f) is not a pointer iff V(g) is not a pointer,

b. if those values are not pointers, then they are the same, nnd

c. if those values are pointers, then F(V(f)) is defined and equal

to V(g).

3. For any Assign, Update, or Delete execution A, the reach R(A) in

co equals the reach R(A) in w2" A
6.2 The Axioms

This section presents the seven Determinacy Axioms for an S-S model.

These include the six Determinate Schema Axioms, plus freedom from

conflict between structure operations. The Determinate Schema Axioms are

sufficient to guarantee determinacy of programs in languages without

structure operations; consequently, they are well-understood and have been

made to hold by design for most existing parallel-programming languages.

These are succinctly presented in terms of a state-transition model of

computation in Denning [9]; here they are translated into entry-execution

terms.

The first two axioms are causality and the Prefix Property. These

are implicit in the state-transition paradigm, and they also hold for the

one entry-execution model which has been constructed. They are not

inherent in the entry-execution view, however, and so should be explicit.

Axiom 6.2-1 (Causality) For any expansion (Int,J), every computation in

every Job in J is causal with respect to Int.

AA

-285-

Axiom 6.2-2 (Prefix Property) For any expansion (Int,J), every job in

possesses the Prefix Property.

A
The third axiom states simply that any action except a structure

operation is deterministic; i.e., in all computations in which it has the

same set of input values, it produces the same set of output values.

Definition 6.2-1 Given any expansion (Int,J) where Int = (St, IsIE), any

action a is deterministic iff the following is true for any two (not

necessarily distinct) computations w and co in any two Jobs in J: For

i=1,2, let ei = Ex(diki) be any execution not in IE such that I(di) = a.

Then

for all J, there is an entry Ent(elj) in w1 iff there is an entry

Ent(e2,j) in w2' and if so, those entries' value are equal

= for all i, the value of Src(elsi) in w1 (if any) equals the value

of Src(e2 ,1) in CA2 (if any).

A
Axiom 6.2-3 (Determinism) For any expansion, all actions except the

eight structure operations (Fetch, First, Next, Select, Assign, Update,

Delete, and Copy) are deterministic. A
The fourth Determinacy Axiom completes the characterization, begun

in Chapter 4, of a job as the set of computations by a single program on

a particular set of inputs. Reviewing the development to this point: The

set of initial interpreter states which represent that program and set of

inputs constitutes an equivalence class E. An individual program input X

is represented in an initial state by the value of a token on a particular

-286-

program input arc b of P. In a program with no structures, X is the

same in two initial states iff the tokens on b have identical non-pointer

values. However, the same structure input can be represented by different

pointers in different states in E (if the components of the heaps to which

they point are equal).

In the entry-execution model of data flow, P corresponds to an expan-

sion (IntJ), where Int - (St,I,IE), and E gives rise to a job JE in J.

The values residing on program input arcs of P in initial states in E are

represented as the values of output 3ntries of executions in IE in the

computations in J Because of the disparity between pointer- and non-

pointer-valued inputs, the definition of job places no restrictions on the

values of output entries of executions in IE.

The pointer-valued output entries of an execution in IE may have

arbitrarily-different values p1 and P2 in different computations wl and 2

in JE , But those pointers are related; in particular, (plcl)P(p2,o2).

The significance of this relationship is evident in the constraints on the

output entries in cI and w2 of executions having p1 and P2 as inputs

(Constraints 5.1-4 and 5.1-5).

No constraints on the output entries of executions in IE are necessary

in a general entry-execution model. Constraints 5.1-4 and 5.1-5 on

pointer-valued entries are necessary in any S-S model. And the following

constraint on the heretofore-unspecified non-pointer-valued entries is

necessary in any determinate entry-execution model.

.............

-287-

Axiom 6.2-4 For any expansion (Int,J) where Int = (St,/,IE), for any eEIE,

any integer i, and any two computations co.I and w 2 in a job in J, the value

of Src(e,i) in co is not a pointer iff the value of Src(e,i) in co2 is not

a pointer, and if those values are both not pointers, then they are equal.

A
The next two axioms concern aspects of the control structure and

local-memory structure of a program. Both of these make use of the

concept of eligible transfers; analogous to enabled operators in a state,

the eligible transfers at the end of a computation a are just those

transfers which can immediately follow a in some longer computation:

Definition 6.2-2 Given a job J and any computation a in J, the set

ET (a) of eligible transfers (at the end of a) is defined by

ETj(a) = 1t 3f: T(f) = t and afEJ}

The first of the two axioms combines a pair of Denning's: persistence

and non-interference. In a state-transition model of a language like data

flow, persistence means that once an operator is enabled to fire, it

cannot be disabled by subsequent firings of other operators; i.e., it

remains enabled until it fires, and it must fire before the firing

sequence can halt. Non-interference concerns the sources of the values

transferred to the number-i input of the jth firing of actor d in differ-

ent firing sequences. If in one firing sequence, that value is trans-

ferred from the output of the kth firing of actor d2 , then in any other

th
firing sequence in which there is a j firing of d and a value is trans-

ferred to its number-i input, that transfer is from the output of the kth

firing of d2.

AD-AOB3 233 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE-EfTC FIG 9/2
DATA-STRUCTURING OPERATIONS IN CONCURRENT COMPUTATIONS. CU)
OCT 79 D L ISAMAN

UNCLASSIFIED MIT/LCS/TR224

4,60flf000llfllflfflf

I;. 1111115 '

11111 I-. 11112.0h

JJJJ1.8

11111 .2.5 111 1. .~ 6

MIHO RN 0 1 ON I I'- A

* 1

-288-

In an entry-execution model, the existence of a jth firing of d1 is

represented as the existence of a complete set of input entries to the

execution Ex(dl,j). Therefore, both persistence of firings and non-

interference between transfers can be combined: Once a firing is enabled,

a set of input entries to the corresponding execution becomes eligible.

Persistence of firings implies that some set of input entries remains

eligible, regardless of any subsequent entries, until it occurs. Further-

more, non-interference means that the sources of the transfers of those

entries are the same, regardless of when the entries occur. Thus, once

a transfer is eligible, that same transfer - same destination, same

source - remains eligible until it occurs. I.e., eligibility of

transfers is persistent:

Axiom 6.2-5 (Persistence) For any expansion (Int,J), for any job JEJ and

any computation ag in J, for any-transfer t#T(g), t(ETj(a) - tEETj(ag).

This axiom is inductively extended in the following lemma.

Lemma 6.2-1 For any persistent expansion (Int,J), let co be any computa-

tion in any JEJ and let t be any transfer in ET(w). Then for any y such

that coy is in J:

JfEy: T(f) - t - tE'Tj(wy)

Proof: By induction on the length of y.

Basle: jyj -0. Then ET 3(coy) -ET i (), so t(ST i((wy).

-289-

Induction step: Assume the Luma is true for any y of length no, and

consider

(1) w - aog, where 1Y1 - n+l

(2) AfEy: T(f) - t * afE6: T(f) - t A T(g)*t (1)

(3) tEETJ(Co) ind. hyp.

(4) - t(ETJ(w g) (2)+Ax. 6.2-5

A
The second axiom concerned with control is commutativity. Denning

states that if two adjacent firings in a sequence can be swapped, then

doing so should not change the resultant control state. I.e., if SlP2

and QP2Pl are both firing sequences starting in state S, then at least

the control portions of the states S'QP1P2 and S-.P 2 p1 are equal. Beyond

this explicit axiom, there is implicit in the state-transition paradigm

the assumption that firing the same actor in either of two equal control

states results again in equal control states. I.e., if S',plc2 and

S_2P 2 p have equal control portions, then for any e such that both 2919 2G

and QP2 Ple are firing sequences starting in S, S' Q 1920 and "002 1 have

equal control portions. Both of these assertions - Denning's explicit

axiom and the tacit assumption about state transitions - must be made

explicit in the entry-execution model; the following axiom combines them

into a single simple statement:

Axiom 6.2-6 (Coimutativity) For any expansion (Int,J), for any job JEJ,

and for any computation agf6 in J such that afg8 is also in J,

ET (afg5) - EJT(agf8)

-29(1 -

The seventh and final Determinacy Axiom is the freedom-from-conflict

axiom. This principle has already been explained (at the end of Section

3.1), and is here translated into entry-execution terms with the aid of

the following observation: Let (1 and 92 be two firings in a firing
th

sequence 2 starting in state S such that, for 1-1,2, 9,is the ki t firing

of actor d Let e1 and e2 be the executions Ex(dl,k1) and Ex(d2,k2)

respectively. If (, and (P2 potentially interfere, then in n(s,2),

Ent(ell) and Ent(e 2 ,1) are in the same access history, and one of •I and

e2 is in the reach of the other.

Axiom 6.2-7 (Freedom from conflict) For any expansion (IntJ), for any

Job JE0, there is no computation agf in J satisfying all the following:

1. f and g initiate distinct executions e1 and e2 respectively in agf,

2. Ent(e1 ,l) and Ent(e 2,1) are in the same access history in agf,

3. e1 is in the reach R(e2) in agf, and

4. there is a computation aig in J with T(7) - T(f) and T(g) - T(g).

A
6.3 The Basic Requirements for Equivalence of Computations

This section presents an important general result concerning the

equivalence of two computations ca and 02 in a job which satisfies the

first four of the Deterainacy Axioms: The first part of the definition

of equivalence - identical sets of transfers - plus one additional simple

condition together imply the remaining three components of equivalence

equal non-pointer values, corresponding pointer values, and equal

reaches. The reason for presenting this here as a separate significant

__ __

!I
-291-

result is that it is anticipated that future research will explore issues

other than strict determinacy which concern equivalence; it is hoped that

these endeavors will be aided by the pre-existence of such a general proof.

The second of the two conditions sufficient for equivalence is set

forth in the following:

Definition 6.3-1 Given a job J, let a and P be any two computations in J.

Then P preserves the order of dependent accesses in a iff the following

is true of every structure operation execution e: Let A

be any Assign, Update, or Delete execution. If Enta(A,l) and Enta(e,1)

are in the same access history in a and e is in the reach R(A) in a, then

A initiates before e in P. If Ent (A) and Ent (el) are in the same

access history in P and e is in R(A) in P, then A initiates before e in a.

A
Relating this to the firing sequences modeled by a and P, Ent(A,l)

and Ent(e,l) are in the same access history iff the firings which they

represent input the same pointer, i.e., access the same node. If e is in

the reach of A, then the state change effected by the firing represented

by e depends upon the inputs to the firing represented by A. Thus the

property just defined is analogous to the following relationship between

firing sequences: If in one firing sequence, the result of a firing which

accesses node n depends upon another firing which also accesses node n,

then those firings occur in the same order in the other firing sequence.

The proof that this together with equal transfer sets imply the three

remaining components of equivalence proceeds by induction on the lengths

i .m

Ir

-292-

of the prefixes of one of the computations. Because it is very long, this

proof is broken into three lemsas, one for each component. This

requires that each component be given a name, and furthermore, that a

modified version of each be made available to relate one computation to a

prefix of the other. This is done is the following series of definitions.

Definition 6.3-2 A computation P is transfer-inclusive of another compu-

tation a iff for each entry f in a, there is an entry g in with the.

same transfer. Two computations are transfer-congruent iff each is

transfer-inclusive of the other.

Definition 6.3-3 Given two computations a and P such that p is transfer-

inclusive of a, P is NPE-inclusive of a iff the following is true of every

entry f in a: Let g be the entry in P with T(g) - T(f). Then V(f) is not

a pointer iff V(g) is not a pointer, and if those values are not pointers,

then they are the same.

Definition 6.3-4 Given two computations a and P such that P is transfer-

inclusive of a, and a pointer correspondence F, P is PE-inclusive of a

under F iff the following is true for every entry f in a: Let g be the

entry in P with T(g) - T(f). Then V(f) is a pointer iff V(g) is a pointer,

and if they are pointers, then F(V(f)) is defined and equal .to V(g).

Definition 6.3-5 Computation P is reach-inclusive of computation a iff,

for each structure operation execution a Initiated in a, and each Assign

-293-

Update, or Delete execution A, e is in reach R(A) in a iff e is in R(A)

in ~

Definition 6.3-6 Computation is inclusive of computation a under

pointer correspondence F iff it is transfer-inclusive, NPE-inclusive,

PE-inclusive under F, and reach-inclusive of a. A
Finally, the proof given here not only establishes the equivalence

of o1 and w2 but also specifies the pointer correspondence under which

they are equivalent. This is the natural pointer correspondence F

defined below:

Definition 6.3-7 Given two computations a and P for the same interpreta-

tion such that P is transfer-inclusive of a, the natural pointer corres-

pondence for a and P, F a,, is given by:

If p is the value of the output entries of a Copy execution C in a,

then F a(p) is the value of the output entries of C in P,

else if there is a pointer p' such that p' is not the value of the

output entries of a Copy execution in P and (p,a)p(p',p),

then F (p) - p,

else F (p) is undefined. A
There are two simple preliminary results which are needed for this

and succeeding proofs. The first has already been established for the

particular model EE(LBs,S); for generality, it is here shown to be true

for every S-S model.

-294-

Corollary 6.3-1 Let a and be any causal computations for the same

interpretation such that a is a prefix of p, and let e be any structure

operation execution initiated in a. Then for any Assign, Update, or

Delete execution A, e is in the reach R(A) in p iff e is in R(A) in a.

Proof: For any pointer p, p is the value of the output entries in p of a

Copy execution C - the first entry in p with value p is one of those

output entries of C (Lemma 5.3-8]. The Corollary then follows directly

from Lena 5.2-6.

The second prelimzinary result first states that any natural pointer

correspondence is one-to-one. It then goes on to show the following

fundamental relationship between two equivalent computations a and p:

For any pointer p, (p,a)p(F (p),p). The importance of this will become
a.P

apparent in the proof in Chapter 7 that only a functional LB$ program can

give rise to a determinate expansion in EE(LDM).

Theorem 6.3-1 Let a and P be any two causal computations for the same

interpretation (St, I,IE) such that P is transfer-inclusive of a. Then

F - F is one-to-one over the set of pointers over which it is defined.
a P~

Furthermore, if P is PE-inclusive of a under F, then for each pointer p

which is the value of an entry in a, (p,a)p(F(p),P).

Proof:

(1) Let p be any pointer for which F(p) is defined, and let p' - 1(p).

Then either p (p') is the value in a (0) of the output entries of

a Copy execution C, or (p,a)p(p ,p) Def. 6.3-7

(2) If p is the value in a of the output entries of a Copy execution C,

-295-

then there is a unique pointer p' which is the value in of the

output entries of C Defs. 6.3-2+4.2-6

(3) Otherwise, there is a unique p' which is not the value of the output

entries of a Copy execution in P such that (p,a)p(p',p)Const. 5.1-5

(4) There is a unique p' such that p' - F(p) (1)+(2)+(3)

(5) Let p1 and P2 be any two pointers for which F(p) is defined. One of

the pointers, say plo is the value in a of the output entries of a

Copy execution and P2 is not the value of the output entries in a

of a Copy execution F(p1) is the value of the output entries of

a Copy execution in , F(P2) is not, and (p 2 ,a)p(F(p 2),P)Def. 6.3-7

(6) - F(P2) is the value in P of the output entries of an execution

which either is in IE or is a Select execution which is in no

reach in Def. 5.1-10

(7) - F(pl) # F(P2) (5)+Const. 5.1-7

(8) p1 and P2 are the values in a of the output entries of Copy

executions C1 and C2 respectively = for i-1,2, F(pi) is the value

in P of the output entries of Ci Def. 6.3-7

(9) - [C 1 # C2 - F(Pl) # F(P2)] Const. 5.1-7

(10) - [1(pl) - F(P2) -* C1 a C2 =, Pl ' P21 Def. 4.2-6

(11) Neither p1 nor P2 is the value in a of the output entries of a Copy

execution a neither F(pl) nor F(P2) is the value in P of the

output entries of a Copy execution, (pl,a)p(F(p,),P), and

Def. 6.3-7

(12) - [F(p1) - F(p2) Pl P21 Const. 5.1-5

(13) F(p1) - F(p2) Pl P2 (5)+(7)+(8)+(10)+(11)+(12)

m - - - - ,--.- i.:,_ ; . . 'I II

-296-

(14) F - F ajis one-to-one over the set of pointers over which it is

defined (5)+(13)

Now prove the second part of the theorem by contradiction. Assume

(15) 0 is PE-inclusive of a under F, but there Is a pointer p which Is

the value of an entry in a and it Is not true that (p,a)p(F(p),P)

(16) There is a prefix yf of a such that, for every pointer q which is

the value of an entry in y, (qa)p(F(q),P), but for p - V(f), it

is not true that (p,a)p(F(p),P) (15)

(17) F(p) is defined, and there is an entry in P which is an output

entry of the same execution as f and has value F(p) (15)+Def. 6.3-4

(18) p is not the value of the output entries in a of a Copy execution

-(p.a)p(F(p),P) (17)+(l)

(19) p is the value of the output entries in a of a Copy execution C

(18) +(16)

(20) f is the first entry in a with value p (16)

(21) f is an output entry of C (19)+(20)+Lma 5.3-8

(22) Ent a(C,1) is in Y (21)4Def. 4.2-7

(23) Let q be V(Ent a(CMl). Then V(Ent P(C.1)) is F(q) (15)+Def. 6.3-4

(24) (q~a)p(F(q) ,P) (23)+(22)+(16)

(25) q~p and since F is one-to-one, F(q)jIF(p) (23)+(22)+(20)+(16)+(14)

(26) DD a(q~p) and DD P(F(q),F(p)) (23)+(21)+(20)+(17)+Def. 5.1-9

(27) (p~a)p(F(q) 1P) (24)+(25)+(26)+Def. 5.1-10

(28) (p~a)p(F(p) ,P) (27)+(25)+(26)+Def. 5.1-10

Since (15) leads to a contradiction between (16) and (28), (15) is false.

Thus the second part of the theorem is proven.

-297-

With these preliminary results, the three parts of the induction step

in the equivalence proof are now presented as separate lemmas.

Lemma 6.3-1 Given an expansion (Int,J), where Int - (St, I,IE), which

satisfies the first four Determinacy Axioms, let af and P be any two

computations in any job JEJ such that P is transfer-inclusive of af. If

P is inclusive of a under the natural pointer correspondence F - F

then P is NPE-inclusive of af.

Proof:

(1) Let s - Src(e,i) be the source in T(f). Then v = V(f) is the value

of s in af Def. 4.2-6

(2) There is an entry g in P with T(g) - T(f) Def. 6.3-2

(3) V(g) is the value of s in p (1)+(2)+Def. 4.2-6

(4) eEIE - V(f) in af is not a pointer iff V(g) in p is not a pointer,

and if they are not pointers, they are the same (1)+(3)+Ax. 6.2-4

(5) J is a job for Int Def. 4.2-2

(6) a, af, and P are all causal computations for Int

(5)+Axioms 6.2-2+6.2-1+Def. 4.2-3

(7) e is initiated in a (1)+(6)+Def. 4.2-7

(8) Letting e - Ex(d,k), there are In(/(d)) input entries to e in a

(6)+(7)+Def. 4.2-6

(9) There are at most In(I(d)) input entries to e in af and in

(7)+Def. 4.2-6

(10) For any J, there is an entry Ent(e,j) in a iff there is an entry

Ent(e,j) in P, and if so, those entries have the same transfer

-(8)+(9)+Defs. 4.2-6+6.3-2

-29 8-

(11) For every J, there is an Ent(e.j) in czf iff there is an Ent(e,j) in

P, and if so, their values are either both pointers or both the

same non-pointer (8)+(9)+(1O)+Defs. 6.3-6+6.3-3

(12) 1(d) is a pI operation -there is a j such that, in all computations

in which e has the same set of non-pointer-valued input entries

as in af, the value of the output entries of e equals V(Ent(e,j))

in that computation Def. 5.1-2

(13) -V(f) - V(Ent af(e,j)) and V(g) - V(Ent P(e,j)) (11)+(l)4-(3)

(14) -V(f) Is not a pointer if f V(g) is not a pointer, and if they are

not pointers, then they are the same (11)

(15) e is not in IE and 1(d) is not a pl or a structure operation - (d)

is a deterministic action Ax. 6.2-3

(16) A e's input and output entries have noni-pointer values Const. 5.1-1

(17) -for every J, V(Ent f (e,i)) -V(Ent P(e~j)) (11)

(18) -V(g) and V(f) are equal non-pointers (11)+(15)+(16)+Def. 6.2-1

(19) For any structure operation execution e' initiated before the last

entry in af, i.e., in a, and any Assign, Update, or Delete

execution A, e' is in reach R(A) in 0 if f e'(R(A) in a

Defe. 6.3-3+6.3-5

(20) iff e'ER(A) in af (6)+(7)+Cor. 6.3-1

(21) If there is an Ent(A,2) In af, its value is not a pointer

(19)4Const. 5.1-1

(22) e'ER(A) in af - e'ER(A) in a - A is initiated in a

(19)+(2O)+(6)+(7)+Lema 5.3-8

(23) -V(Int af (A,2)) -V(Ent (A,2)) (7)-(11)+(21)

-299-

(24) IMd is a structure operation -Enta (e,l) and Ent P(e~l) are both

pointer-valued, and have the same transfer, and if I(d) is

anything but Fetch, First, or Copy, e has the same non-pointer

selector input in af and 0 (l0)+(ll)+Const. 5.1-1

(25) -for p - V(Ent a (e,l)) - V(Ent a(e,l)) and P' - V(Ent P(el)),

F(p) is defined and equal to p' Defs. 6.3-6+6.3-4

(26) -(p~a)p(p',P) (6)+Def. 6.3-6+Thm. 6.3-1

(27) -(p~caf)p(p',P) (6)+(19)+(20)+Leuua 5.3-10

(28) IMd is a First or Next -e is in the reach of an Update (Delete)

execution with selector input s in af if f e is in the reach of an

Update (Delete) execution with selector input s in P

(7)+(l9)+(20)+(22)+(23)

(29) -for 1-1,2, Src(e,i) has the same value in af as in P

(6)+(24)+(25)+(27)+Const. 5.1-6

(30) -V(f) V(g) Ml+(3)

(31) I(d) is an Assign, Update, or Delete and i - 1 - e is in a reach

in af -V(f) - V(g) -01 (l)+(3)+Consts. 5.1-3+5.1-4

(32) A [e is not in a reach in af -V(f) - V(g)]

(6)+(24)+(25)+(27)+(l)+(3)+Const. 5.1-5

(33) /Md is a Fetch or Assign and eER(A) in af -eER(A) in P

(7)+(19)+(20)

(34) -letting v be V(Ent af(A,2)) -V(Ent P(A,2)), [i - 1 and I(d) is

Fetch mo V(f) - V(g) - V) A [1 2 - V(f) - V(g) - (vsnil)]

(22)+(23)+Const. 5.1-3

(35) IMd is Fetch or Assign and e is in no reach in af -V(g) -VMf

(6)+(24)+(25)+(27)+(l)+(3)+Const. 5.1-5

-300-

(36) 1(d) is Select, Update, or Delete and 1 2 [e is in the reach

of an Update in af -e Is in the reach of an Update in a

W~) - V(g) - true] A [e is in the reach of a Delete In af

V(f) - V(g) - false] (7)+(19)+(20)+Const. 5.1-4

(37) A (e is in no reach in af =,V(f) - V(g)]

(6)+(24)+(25)+(27)+(1)+(3)+Const. 5.1-5

(38) 1(d) is a Select and i - 1, or /(d) is a Copy -*V(f) and V(g) are

pointers Const. 5.1-1

(39) V(f) is not a pointer iff V(g) is not a pointer, and if they are

not pointers, they are the same (4)+(12)+(14)+(15)+(18)+(28)-(38)

(40) P is NPE-inclusive of af (39)+Def. 6.3-3

Lemma 6.3-2 G iven an expansion (Int,J), where Int - (St,l,IE), which

satisfies the first four Determinacy Axioms, let af and P be any two

computations in any JEJ such thatp is transfer-inclusive of af. If P is

inclusive of a under the natural pointer correspondence F a,Ps then P is

FE-inclusive of af under F afp*

Proof: Abbreviate F aPas F and F afPas F'.

(1) Let s - Src(e,i) be the source in T(f). Then V(f) is the value of

a in af Def. 4.2-6

(2) There is an entry g in P with T(g) - T(f) Def. 6.3-2

(3) V(g) is the value of s in P (l)+(2)+Def. 4.2-6

(4) J is a job for Int Def. 4.2-2

(5) a, af, and P are all causal computations for Int

(4+Axdomn 6.2-146.2-2+Def. 4.2-3

(6) ais Initiated in a (l)+(5)+Def. 4.2-7

-301-

(7) Letting e = Ex(d,k), there are exactly In(I(d)) input entries to

e in a, and at most In(/(d)) input entries to e in af and in

(5)+(6)+Def. 4.2-6

(8) For any J, there is an entry Ent(e,j) in a iff there is an entry

Ent(e,j) in P, and if so, those entries have the same transfer

(7)+Defs. 4.2-6+6.3-2

(9) For every J, there is an Ent(e,j) in af iff there is an Ent(e,j) in

P, and if so, their values are either both pointers or both the

same non-pointer (8)+Defs. 6.3-6+6.3-3

(10) 1(d) is a pl operation - there is a j such that, in all computations

in which e has the same set of non-pointer-valued input entries

as in af, the value of the output entries of e equals V(Ent(e,j))

in that computation Def. 5.1-2

(11) - V(f) - V(Entaf(eJ)) and V(g) - V(EntP(eJ)) (9)+(l)+(3)

(12) For every h in af and k in P such that T(k) - T(h), V(k) is a

pointer iff V(h) is a pointer Lemma 6.3-1+Def. 6.3-3

(13) and if h is in a, and those values are pointers, then F(V(h)) is

defined and equal to V(k) Defs. 6.3-6+6.3-4

(14) For each pointer r which is the value of an entry in a, r is the

value in a of the output entries of a Copy execution C - r is the

value in af of the output entries of C and F(r) is the value in

of the output entries of C - F'(r) is the value in P of the output

entries of C - F'(r) - F(r) Def. 6.3-7

(15) r is the value of an output entry of a Copy execution in af - the

first entry with a value of r in af, which is in a, is an output

entry of C (5)+(14)+Lemma 5.3-8

-302-

(16) For any structure operation execution e' initiated in a, and for

any Assign, Update, or Delete execution A, e'ER(A) in P if f

e'ER(A) in a Defs. 6.3-6+6.3-5

(17) iff e'ER(A) in af (5)+(6)+Cor. 6.3-1

(18) r is not the value in a of the output entries of a Copy execution

SF(r) - r', where r' is not the value in pof the output entries

of a Copy execution and (r,a)p(r',p) (13)+Def. 6137

(19) A r is not the value of an output entry of a Copy execution in af

(15)

(20) (r~af)p(r',p) (5)+(16)+(17)+Leama 5.3-10

(21) F'(r) - r' - F(r) (19)+(18)+Def. 6.3-7

(22) Assume V(f) is a pointer p. Then V(g) is a pointer p' (12)+(2)

(23) e either is in IE or is a pI executiont a Copy, or a Select

execution (22)+(1)+-Const. 5.1-1

(24) eEIE -athere is a source s - Src(e,i) such that p (p') is the

value of a in af (P) (1)+(3)+(22)

(25) - (p~af)p(p',P) Def. 5.1-10

(26) A p (p') is not the value of the output entries of a Copy execution

In cif (P) Coast. 5.1-7

(27) - p' - F'(p) Def. 6.3-7

(28) e is a Copy execution -*p (p') is the value of the output entries

of a Copy execution C in af (P) (1)+(3)+(22)

(29) - p' - F'(p) Def. 6.3-7

(30) a is a pl execution 3J: V(f) uV(Ent f (e~j)) -p and

V(g) - V(Ent P(e~i)) - p' (10)+(11)+(22)

(31) Entaf(e,i) Is In ai (7)

-303-
(32) e is a pI execution p' -F(p) (8)+(12)+(13)+(30)+(31)

(33) e is a Select execution which is in a reach in af -e is in the

reach of an Update execution U in af (22)4Const. 5.1-4

(34) -e is in the reach of U in P (6)+(16)+(17)

(35) A U is initiated before e, i.e., in a (5)+(6)+Leuua 5.3-8

(36) -p - V(f) - V(Ent af (U,3)) A p' - V(g) - V(Ent P(U,3))

(33)+(34)+(l)+(3)4Const. 5.1-4

(37) A Ent af(U.3) is in a Def. 4.2-6

(38) -p' -7(p)

(39) e is a Select execution which is in no reach in af -e is a

Select execution which is in no reach in (6)+(16)+(17)

(40) A V(Ent af (,)an EtP(e2)are not pointers and so are

the same (9)+Const. 5.1-1

(41) A letting q - V(Ent af (el)) and q' -V(Ent (e~1)), F(q) is defined

and equal to q' (6)+(7)+(11)+(12)

(42) -(q,a)p(q',P) (5)+(7)+Def. 6.3-6+Thm. 6.3-1

(43) -(q~af)p(q',P) (5)4-(16)+(17)+Lemua 5.3-10

(44) -(p,af)p(p',P) (22)+(l)+(3)+(39)+(40)+(41)+Def. 5.1-10

(45) A p (p') Is not the value of the output entries of a Copy execution

in af (P) (22)+(1)+(3)+(39)+Const. 5.1-7

(46) - p' - F'(p) Def. 6.3-7

(47) p' - F'(p)

(23)+(24)+(27)+(28)+(29)+(39)+(46)+(32)+(33)+(38)+(14)+(18)+(21)

(48) Is fl-incluuive of af under V' (12)+(13)+(22)+(47)+Def. 6.3-4

-304-

Lemma 6.3-3 Given an expansion (Int,J), where Int = (St, ,IE), which

satisfies the first four Determinacy Axioms, let af and P be any two

computations in any JEJ such that P is transfer-inclusive of af. If

a. P is NFE-inclusive of af,

b. p is PE-inclusive of af under natural pointer correspondence Faf,p,

c. is reach-inclusive of a, and

d. P preserves the order of dependent accesses of af,

then P is reach-inclusive of af.

Proof: Abbreviate F af, as F.

(1) J is a job for Int Def. 4.2-2

(2) af and P are causal computations for Int (1)+Ax. 6.2-1+Def. 4.2-3

(3) For every structure operation execution e initiated in a, and for

any Assign, Update, or Delete execution A, e is in reach R(A) in

a iff e is in R(A) in Def. 6.3-5

(4) and e is in R(A) in a iff e is in R(A) in af (2)+Cor. 6.3-1

(5) If f does not initiate a structure operation execution, then for

every structure operation execution e initiated in af, e is

initiated in a Def. 4.2-6

(6) -e is in R(A) in af iff e is in R(A) in P (3)+(4)

(7) For any structure operation execution e - Ex(d,k) initiated in af,

there are In(l(d)) input entries to e in af Def. 4.2-6

(8) and a is initiated in P Defs. 6.3-2+4.2-6

(9) In(l(d)) > I - V(ntaf(e,2)) is not a pointer Const. 5.1-1

(10) . V(ntP(e,2)) - V(Entaf(e,2)) (5)+Def. 6.3-3

(11) Assume f initiates a structure operation execution a - Ez(d,k)

-305-

in af. For any Assig Update, or Delete execution A, e(R(A) in

a-aA is initiated befor e, i.e., in a

V(Ent f(e,2)) - V(Ent(eX) (2)+(7)+(9)+(O)+Lema 5.3-8

(12) e is in R(A) in af if f e and A arecuinofnefafe

prescribed combinations of opeatio s, [A is an Update or Delete A

e is a Select, Update, or Delete -V(,tf (e,2)) - V(Entaf(A.2))],

and Ent f (e31) is in duration D(A) in af Defs. 5.1-6+5.1-8

(13) If A is an Update or Delete and e is a Select, Update, or Delete,

then eER(A) in af - V(Ent (e,2)) -V(Entaf(A, 2) if f

V(Ent (e,2)) - V(Ent (A,2)) (11) (7)+(9)+(10)+(8)

(14) For every structure operation execution A initiated iaf and every

pontr , nt(A~l) isi fiff V(Entf(A,:)) - p Def. 5.1-4

(15) if f A is initiated in pand V(Ent P(Al)) --F(p) (7)+(8),+Def. 6.3-4

(16) iff Ent (AMl is in ;F() f. 5.1-4

(17) For any pointer p and any computation w~, denote by APS(p,w)

sequence of the entries in the set {Ent,,(A,1) I A is an Assig)

arranged in the same relative order as they appear in HO. The
p

every entry in APS(p,af) is in APS(F(p),P) (14)+(16)+Def. 5A\-4

Now prove the following:

A: For any p and for any i less than or equal to the length of APS(p,af),

the i t element in the sequence APS(p,czf) is Ent af(A,l) if f the It

element in APS(F(p),P) is Ent (A,l).

Proof Is by induction on i.

Basis: I - 1.

(18) Let Ent af (A,l) be the first element in APS(p,af). Ent (A~l) is

not the first element in APS(F(p),P) -it is the j t, j > 1 (17)

-306-

(19) -letting Ent P(A',1) be the J-1l element in APS(F(p),P), there is

no Assign execution input entry between Ent P(A',1) and Ent P(A,l)

in 0~~ (17)

(20) -Ent P(A91) is in the duration D(A') in P Def. 5.1-5

(21) -A Is in R(A') in P Def. 5.1-6

(22) -A' initiates before A in af (19)+Def. 6.3-1

(23) Entf(A',1) is in Hlaf (19)+(14)+(16)
af p

(24) -Ent (A',1) precedes Ent (A,l) in olf (22)+(18)+Def. 5.1-4
afaf p

(25) -Ent f (A~l) is not the first element in APS(p,af) (17)

(26) Ent 0(A~1) is the first element in APS(F(p),p) (18)+(25)

Induction step: Assume that for some n > 0, for all I :!- n, Ent f (A,1)

is the i t element of APS(p,af) iff Ent P(A~1) is the i t element of

APS(F(p),P). Consider A such that

(27) Ent (AM1 Is the n4-lSt element of APS(p,af)
ath

(28) 3j: Ent P(A~l) is the .j thelement of APS(F(p),P) (17)

(29) j 5 n -Ent f (A~l) is the j ch lement of APS(p,af) Ind. hyp.

(30) J > n (27)+(29)

(31) Let A' be such that Ent P(A.1l) is the J-1ia element of APS(F(p),P).

Then Ent af(A .1) precedes Ent f (A,1) in APS(p,af) (19)-(24)

(32) Ent af(A',l) is the k th element in APS(p,af) for k S n (31)+(27)

th(33) Ent P(A',l) is the k element In APS(F(p),P) (32)+ind. hyp.

(34) J-1 -s n; I.e., j 5 n+l (31)+(33)+(32)

(35) Ent P(A.1) is the n+l at element of APS(F(p),P) (28)+(30)+(34)

Thus A Is proven by induction. For any structure operation execution I
initiated In czf, and any Assign execution A, there are three cases.

-307-

Case 1: e is in R(A) in af, Ent f (e~l) is in the duration D(A) in af, and

Entf (e,l) and Enit f(Al) are in the samue access history H af.
af afp

(36) e and A are executions of one of the right combinations of

operations, and if A is an Update or Delete and e is a Select,

Update, or Delete, then V(Ent (e,2)) - V(Ent (A,2)) (12)+(13)

(37) Ent (e,1) and En Al are both in Fp) (11)+(14)+(16)

(38) Letting i be such that Ent f (A~l) is the i th element of A~PS(paf),

Entaf(e~l) follows Enit f(Al) in Haf, but does not follow in H a
afafp p

the i+ls element of APS(p,af) (ll)+(17)+Def. 5.1-5

(39) A initiates before e in a Def. 6.3-1

(40) Ent P(e~l) follows Enit P(A,l) in HFP(p) (37)+(39)+Def. 5.1-4

(41) Ent P(Al) is the i t element of APS(F(p),P) (38)4-A

(42) eAR(A) in P z there is an Assign execution .A'*A such that Ent (e~l)

is in D(A') in P and eER(A') in P (36)+(40)+Def. 5.1-6

(43) -Ent (A',l) is between Ent (Al) and Ent (e,l) in HP Def. 5.1-5
P p P F(p)

(44) A A' Initiates before e in af (ll)+Def. 6.3-1

(4) nt (A.,l) prcde ntfe) in H af (43)+(14)+(16)+Def. 5.1-4
af ap

th
(46) Entaf (A',l) is the J element of APS(p,af) for j < i (38)+(42)

(47) -Enit P(A', 1) is the J t element of APS(F(p),P) and J < i (38)+A

(48) -Ent P(A',l) precedes Ent P(A91) in H;P(P) (40)+(41)+(17)

(49) eER(A) in p(42)4-(43)+(48)

Case II: e(R(A) and Ent af(e,l)ED(A) in af, Enit af(e~l) is in H pf, but

af
Ent f (Al) is not in H

(50) a and A are executions of one of the right combinations of

operations, and if A is an Update or Delete and e is a Select,

Update, or Delete, then V(Ent (e,2)) -V(Ent (A,2)) (12)+(13)

(5)Ent (e,1) is in HO() but En Al snt(11)+(14)+(16)F~p)p
Ir (52) Ent (e,1) precedes in Hf the first element of APS(p,af), p is the

af p
value of the output entries of some Copy execution C in af, and

Ent af(CM1 is in D(A) in af (17)+Def. 5.1-5

(53) C is in R(A) In af (52)+Def. 5.1-6

(54) Ent af (e,1) has value p and is in af Def. 5.1-4

(55) There is an entry in af which is an output entry of C

(2)+(54)+(52)+Lema 5.3-8

(56) C's initiating entry precedes that entry, i.e., C is initiated in a

(55)+-(2)4.Def. 4.2-7

(57) C is in R(A) in P(53)+(56)+Def. 6.3-5

(58) Ent (C~l) is in D(A) in (57)+Def. 5.1-6

(59) F(p) is the value of the output entries of C in P (52)+Def. 6.3-7

(60) eAR(A) in There is some entry in APS(F(p),P) which precedes

Ent P(e~l) in Hjp (50)+(51)+(59)+(58)+(17)+Def. 5.1-5

(61) -There is some A' such that Ent P(A'.l)(APS(F(p).P) and Ent P(e~l)

is in D(A') in P (17)+Def. 5.1-5

(62) -eER(A') in (50)+Def. 5.1-6

(63) - A' initiates before e in af Def. 6.3-1

(64) -Ent (A',l) is in H Lf (60)+(14)+(16)
rif p

(65) -Ent (A',1), which is in APS(p,af), precedes Ent (0,1) in f
Qf afp

(17)+(63)+Def. 5.1-4

(66) eER(A) in (60)+(65)+(52)

Case III: There is no Assign execution A such that e(R(A) in (If. Prove

that there is no Assign execution A such that eER(A) in Pby contradiction.

-309-

(67) Assume there is an Assign execution A such that eER(A) in

(68) e and A are executions of one of the proper combinations of opera-

tions, if A is an Update or Delete and e is a Select, Update, or

Delete, then V(Ent (e,2)) - V(EntP(A,2)), and Ent (e,l)ED(A) in

Def. 5.1-6

(69) If A is an Update or Delete and e is a Select, Update, or Delete,

then V(Entaf(e,2)) - V(Ent af(A,2)) (13)

(70) Entuf(e,l)(D(A) in af z eER(A) (68)+(69)+Def. 5.1-6

(71) Entf(el)ID(A) in af (70)

(72) There is a pointer p such that Entf(el) precedes in Haf the first
p

element of APS(paf), and either p is not the value in af of the

output entries of a Copy execution, or p is the value in af of the

output entries of a Copy execution C, but Ent af(C,l) is not in

D(A) in af (17)+(71)+Def. 5.1-5

(73) There is some entry in APS(F(p),p) which precedes Ent (e,l) in

() * there is some A' such that Ent (A',l) is in APS(paf)Nin APapaf

and precedes Entf(e,l) in Haf (69)+(60)+(65)
p

(74) There is no entry in APS(F(p),p) which precedes Ent (e,l) in H(p)

(73)+(72)

(75) F(p) is the value of the output entries of a Copy execution C in p

iff p is the value of the output entries of C in af Def. 6.3-7

(76) p is not the value of the output entries of a Copy execution in af

m F(p) is not the value of the output entries of a Copy execution

in p (75)

(77) p is the value of the output entries of a Copy execution C in af

-310-

and Ent (C~l) is in 0)(A) in C to Isnitiated in a (72)+(54)-(56)

(78) A C Is in R(A) in pDef. 5.1-6

(79) - C Is in R(A) ina Def. 6.3-5

(80) -Ent f (C,l) is in D(A) in at Def. 5.1-6

(81) p is the value of the output entries of Copy execution C, but

Ent f (C~l) is not in D(A) in af -* F(p) is the value of the output

entries of C in P (75)

(82) A Ent P(C,l) is not in D(A) in p(77)+(80)

(83) Ent P(e~1) is not in D(A) in P (72)+(74)+(76)+(81)+(82)+Def. 5.1-5

Since (67) implies a contradiction between (68) and (83), (67) is false.

(84) There is no Assign execution A such that eER(A) in p

(85) If f initiates a structure operation execution e in at, then for

any Assign execution A, eER(A) in af Iff eER(A) in p (49)+(66)+(84)

Replacing "Assign execution A" with "Update or Delete execution A with

V(Ent(A,2)) - V(Ent(e,2))" in (17) through (85) yields a proof of

(86) For any Update or Delete execution A, eER(A) in af iff eER(A) in

(87) P is reach-inclusive of at (5)+(6)+(l1)+(85)+(86)+Def. 6.3-5

Now the framework of the induction is easily built on these three

lemms, to complete the proof of the basic requirements for equivalence.

Theorem 6.3-2 Given an expansion (Int,J) which satisfies the first four

Determinacy Axioms, let cland w2 be any two computations in any job JEJ.

It a)2 Is transfer-congruent to wland preserves the order of dependent

accesses of cal, then co2is equivalent toca,

-311-

Proof: First prove,- by induction on the lengths of the prefixes of (

that w~2 is inclusive of wlunder the natural pointer correspondence

F - F .Induction hypothesis is that wis inclusive of a prefix a

of 01l under F w

Basis: jal - 0

(1) There are no entries in a, so that there are no executions of

structure operations initiated in a Def. 4.2-6

(2) w 2 is vacuously inclusive of a (l)+Defs. 6.3-2-6.3-6

Induction step: Assume that co2is inclusive of the length-n prefix a of

wunder Fa, 2 and consider the length'-n+1 prefix af of t

(3) Jis ajob fof Int Def. 4.2-2

(4) wi C 2" a, and af are all causal computations for Int and are aill

in J (3)+Axioms 6.2-l+6.2-2+Def. 4.2-3

(5 w2 is transfer-inclusive of wit, hence of af Def. 6.3-2

(6) ca2 is inclusive of a under F ,'2md. hyp.

(7) w 2 is NPE-inclusive of af (4)+(5)+(6)+Lena 6.3-1

(8) W~2 is PE-inclusive of af under F af.4)2 (4)+(5)+(6)+Lemma 6.3-2

(9 W is reach-inclusive of a (6)+Def. 6.3-6

(10) For each structure operation execution e initiated in af, e is

initiated in "'1 Def. 4.2-6

(11) For each such e, and each Assign, Update, or Delete execution A,

e(R(A) in af to A is initiated before e in af (4)+Lewma 5.3-8

(12) e(R(A) in af and Ent f (A~l) and Ent f (e~l) are in the same access

history in af toe(R(A) in w,(4)+(1O)+(1l)+Cor. 6.3-1

(13) A V(Ent af(e.1)) - V(Ent f (A,1)) Def. 5.1-4

-312-

(14) - Entaf(el) and Entaf(A,1) are in the same access history in cal

(10)+(11)+Def. 5.1-4

(15) A is initiated before e in w2 (12)+Def. 6.3-1

(16) eER(A) in w2 and Ent (e,l) and Ent (A,1) are in the same access

history in w2 = A is initiated before e in 1I (lO)+Def. 6.3-1

(17) - A is initiated before e in af (10)+Def. 4.2-6

(18) w2 preserves the order of dependent accesses of af

(10)+(11)+(12)+(15)+(16)+(17)+Def. 6.3-1

(19) w2 is reach-inclusive of af (4)+(5)+(7)+(8)+(9)+(18)+Lemma 6.3-3

(20) w2 is inclusive of af under Fafw 2 (5)+(7)+(8)+(19)+Def. 6.3-6

Thus it is proven inductively that

(21) w 2 is inclusive of 0I under F

(22) The set of transfers of the entries in w and w are identical

Def. 6.3-2

(23) For any entry f in aoI, let g be the entry in 0)2 such that T(g) - T(f)

Then V(f) is not a pointer iff V(g) is not a pointer, and if those

values are not pointers, they are equal (21)+Defs. 6.3-6+6.3-3

(24) F is one-to-one (4)+(22)+Def. 6.3-2+Thm. 6.3-1

(25) There is a one-to-one pointer correspondence F such that V(f) is a

pointer iff V(g) is a pointer, and if they are pointers, then

F(V(f)) is defined and equal to V(g) (21)+(24)+Defs. 6.3-6+6.3-4

(26) For any Assign, Update, or Delete execution A, eER(A) in w, a

Ent(e,l) is in D(A) in w Defs. 5.1-6+5.1-8

(27) - Ent(e,l) is in an access history in c1 Defs. 5.1-5+5.1-7

(28) - e is initiated in co1 Def. 5.1-4

-313-

(29) e(R(A) in w02 (26)+(21)+Defs. 6.3-6+6.3-5

(30) e(R(A) in w2 =& e is initiated in w2 (26)-(28)

(31) - e is initiated in ca (22)+Def. 4.2-6

(32) - e(R(A) in co (30)+(21)+Defs. 6.3-6+6.3-5

(33) R(A) in col equals R(A) in w2 (26)+(29)+(30)+(32)

(34) w2 is equivalent to 0, (22)+(23)+(25)+(33)+Def. 6.1-1

Q.E.D.

6.4 The Determinacy Proof

This concluding section applies the foregoing general equivalence

result to the immediate problem of proving that the Determinacy Axioms

imply determinacy. The Determinacy Proof Technique introduced in

Chapter 4 is used to prove, as required, that any two halted computations

co and w2 in a job J are equivalent. A sequence of computations is

constructed in which the first iso,1, each succeeding computation is in J,

is halted, and is equivalent to the preceding, and the last computation

is equivalent to w2"

Each computation in this sequence is derived from the preceding one

by permuting a single entry zero or more positions to the left. That

such a permutation results in an equivalent computation is proven first,

in two lemmas. The first of these proves that moving an entry one

position to the left yields an equivalent computation which is in the same

job. The second lemma then inductively extends this to a permutation of

any number of positions to the left.

.

-314-

Lemma 6.4-1 Let (Int,J), where Int = (St,/,IE), be any expansion from an

S-S model which satisfies the Determinacy Axioms. For any JEJ, for any

computation agfp in J such that

(1) T(f)EETj(a)

afgP is in J and is equivalent to agfp.

Proof:

(2) agf is in J and so is causal Axioms 6.2-1+6.2-2+Def. 4.2-7

(3) Assume there is a computation afgEJ in which T(f) = T(f) and

T(g) = T(g). Let e be any structure operation execution initiated

in agf, and let A be any Assign, Update, or Delete execution. Then

eER(A) in agf and Ent(AI) and Ent(e,l) are in the same access

history in agf = it is not the case that f and g are the initiating

entries of e and A (2)+Ax. 6.2-7

(4) A A's initiating entry precedes e's in agf (2)+Lemma 5.3-8

(5) A's initiating entry is in a (3)

(6) = A's initiating entry precedes e's in afg (4)

By symmetry (exchanging g for f and f for),

(7) eER(A) in afg and Ent(A,l) and Ent(e,l) are in the same access

history in afg A's initiating entry precedes e's in agf

(8) If there is an afgEJ in which T(f) =.T(f) and T(g) - T(g), then it

preserves the order of dependent accesses of agf

(3)+(6)+(7)+Def. 6.3-1

Now prove the Lemma by induction on the length of P.

Basin: " 0.

(9) aSfP - agf is in J

f -315-

(10) 3?:T(Y) -T(f) and ofEJ (1)+Def. 6.2-2

(11) ag(J (9)+Ax. 6.2-2+Def. 4.2-7I(12) TWgEET (a) (l1)+Def. 6.2-2

(13) T(g) and T(f) have distinct destinations, so T(g)*T(?)

(9)+(10)+Def. 4.2-6

(14) T(g)EET i(a?) (1O)+(13)+(12)+Ax. 6.2-5

(1)39: T(g) - T(g) and afgEJ 1)Df6.-

(16) afg is transfer-congruent to agf (10)+(15)+Def. 6.3-2

f(17) afg preserves the order of dependent accesses of agf (10)+(15)+(8)

(18) afg is equivalent to agf (16)+(17)+Tbm. 6.3-2

(19) V(f) is not a pointer -V(?) - V(f) (10)+(18)+Def. 6.1-1

(20) f (l0)+Def. 4.2-5

(21) V(g) is not a pointer -g - g (15)+(18)+Defs. 6.1-1+4.2-5

If V(f) is a pointer, there are two cases to consider. Case 1:

(22) There is an entry k~a with V(k) - V(f)

*(23) There is an entry k in aig with T(i) = T(k), and since k~a,

V(k) - V(k) (16)4-Def. 6.3-2

(24) There is a one-to-one mapping F over pointers such that

V(i) - F(V(k)) and V(?) - F(V(f)) (10)+(23)+(18)+Def. 6.1-1

(25) F(V(k)) - F(V(f)) (24)+(22)

(26) V(?) - F(V(f)) - F(V(k)) - V(i) - V(k) - V(f) (24)+(25)+(23)+(22)

(27) afg is in J (15)+(26)+(10)

Case 11:

(28) There is no entry in a with the same value as f

(29) Let p -V(?) and p' -V(f). Define the map Y by

-316-

Y~q)q if q 0 p

pfif q -p

Then substituting for each entry k in afg9 a similar entry, with

transfer T(k) and value V(k), if that is not a pointer, or Y(V(k))

otherwise, yields Qfg (or afg if V(g) - p). Therefore, if V(g) - p

then afg t- afg, else afg , afg (28)+Def. 5.1-3

(30) If V(g) -p, then afg is in J, else afg is in J(15)+(29)+Const. 5.1-2

By applying the same reasoning as (22)-(30),

(31) if V(g) is a pointer not equal to p', then afg is in J

(32) afg is in J (l9)+(20)-I(2l)+(30)+(31)

(33) afg is transfer-congruent to agf Def. 6.3-2

(34) afg preserves the order of dependent accesses of cigf (32)+(8)

(35) afg is equivalent to agf (33)+(34)+Thm. 6.3-2

Induction step: Assume that the Lemma is true for any czgf P in which

-n >t 0, and consider

(36) agfp - agfsh, in which II-n+l

(37) agf6(J, agfEJ, and T(h)EET 3 (agf6) (36)+Ax. 6.2-2+Defs. 4.2-7+6.2-2

(38) J is a job for Int Def. 4.2-2

(39) agf8h and agf are causal computations for Int

(37)+(38)+Ax. 6.2-l+Def. 4.2-3

(40) afS8 is in J (36)+(37)+ind. hyp.

(41) IT,(0f8) - ETj(cagf8) (37)+(40)+Ax. 6.2-6

(42) T(h) is in ET 3(afg8) (37)+(41)

(43) 3K: T(S - T(h) and cifg8E~J (42)+Def. 6.2-2

(44) czfg5K is transfer-congruent to a~gf~h (43)+Def. 6.3-2

(45) Let czfg5Si be !ML computation in J in which T(S) -T(h). Let e be

-317-

any structure operation execution initiated in agf8h, and let A

be any Assign, Update, or Delete execution. There are then two

cases to consider.

Case I:

(46) e's initiating entry is in agf

(47) eER(A) in agf~h -mA is initiated before e, i.e., in cigf

(39)+(46)+L-mu 5.3-8

(48) eER(A) in agfs~h and Ent(e,1) and Ent(A,l) are in the same access

history in agf8h -e(R(A) in cigf (39)+(46)+Cor. 6.3-1

(49) A V(Ent(e,l)) - V(Ent(A,1)) Def. 5.1-4

(50) -Ent(e,1) and Ent(A,1) are in the same access history in a~gf

(46)+(47)+Def. 5.1-4

(51) -A is initiated before e in afg (34)+(48)+Def. 6.3-1

(52) -A is initiated before e in afg8h Def. 4.2-6

By synmetry

(53) eER(A) in ctfg6hi and Ent(e,l) and Ent(A,l) are in the same access

history in afg6h - A is initiated before e in agf8h

(54) (46) -afg6hi preserves the order of dependent accesses of agf~h

(48)+(52)+(53)+Def. 6.3-1

Case It:

(55) e's initiating entry is in 6h

(56) eER(A) in Qgf~b A is initiated before e in agf6h (39)+Leuma 5.3-8

(57) -letting A - Ex(d,k), In(I(d)) input entries to A precede e's

Initiating entry in agf8h Def. 4.2-6

(58) - WINd)) input entries to A precede e's initiating entry in afg~h

(55) ____1

.-

-318-

(59) -A is initiated before e in afgbi; Def. 4.2-6

By syaetry

(60) eER(A) in afg6E A is initiated before e in agf~h

(61) afg6h preserves the order of dependent accesses of agf~h

(45)+(54)+(55)+(59)+(60)+Def. 6.3-1

(62) afg6h is equivalent to agf~h (44)+(61)+Thi9. 6.3-2

By reasoning similar to (19)-(32)

(63) afg6h is in J

(64) afg~h is transfer-congruent to agf6h Def. 6.3-2

(65) afgah preserves the order of dependent accesses of agf~h (45)+(61)

(66) afgp is equivalent to agfp3 (36)+(64)+(65)+Thip. 6.3-2

Lemmia 6.4-2 Let (Int,J) be any expansion from an S-S model satisfying the

Determinacy Axioms. Then for any computation cipfy in any J(J in which

af fy is in J, and is equivalent to apfy, and ET (afPY ETrr)py)

Proof: By induction on W~.

Basis: jpj - 0. Then cifpy - cspfy, so the La in trivially true.

Induction step: Assume the Lma is true for an o.pfy(J in which

-n 0, and consider any

(2) apfy -ag6fyr In J In which J~-n+1

(3) T(f) * T(g) Def. 4.2-6

(4) agEJ Az. 6.2-2+Def. 4.2-7

(5) Tf)(E~~ag)(l)+(3)+(4)+Az. 6.2-5

-'r ,.- -

-319-

(6) agf~y is in J and is equivalent to agefy, and

ETJ(cLgf6y) -ETJ(agbfy) (5)+(2)+ind. hyp.

(7) afg8y is in J and is equivalent to agf8y (1)+(6)+Lem"s 6.4-1

(8) afg8y is equivalent to ag6fy (6)+(7)+Def. 6.1-1

(9) ET (afg6y) - ETj(exgf6y) (6)+(7)+Ax. 6.2-6

(10) ETJ(afg6y) -ET,(agafy) (6)+(9)

A
Now finally the Determainacy Proof Technique is easily utilized to

produce the following quite general result:

Theorem 6.4-1 Every expansion (Int,J) from an S-S model which satisfies

the Determinacy Axioms is determinate.

Proof: It is required to prove for any JJJ that, by virtue of

satisfying the Determinacy Axioms, any two halted camputations a) and wa'

in J are equivalent. Assume without loss of generality that

Inductively construct from (a a sequence of computations coo ,n,

in which each wkcan be written as

(2) w0k - kPk' where

letting ak be the length-k prefix of w~', for il,.kthe i th

entry In akhas the same transfer as the I t entry in a,1, and

(a-ak ; ** is derived from co by striking out every

entry which has the same transfer as an entry in a

Prove, by induction on k, the following hypotheses:

-320-

A: wk is in J

B: wk is halted in J

C: is equivalent to co,

D: k is equivalent to

Basis: k -0. Then ak X, so kX. Then k " X -W. So

t o = ,-0 and A, B, C, and D are trivially true.

Induction step: For any k, 0 - k < n, assume that there is an wk lk

such that A, B, C, and D are true of O, and construct k+l"

(3) Let f be the k+lst entry in 0 t, i~e., ak4l - akf is a prefix of w'.

hence is in J (2)+Ax. 6.2-2+Def. 4.2-7

(4) T(f)EETJ(ak) (3)+Def. 6.2-2

(5) a is equivalent to ak ind. hyp. D

(6) The ith entry in a has the same transfer as the ith entry in ak (2)

thh
(7) If the value of the i t entry in ;k Is non-pointer v, then the valuei

of the I t h entry in ak is non-pointer v (5)+(6)+Def. 6.1-1

(8) There is a one-to-one pointer correspondence F such that if the

value of the Ith entry in a is pointer p, then the value of the

ith entry in ak is F(p) (5)+(6)+Def. 6.1-1

(9) Define Y: V -o V to be
p P

if V(f) is not a pointer or F(V(f)) is defined, then T - F,

else for all qEV,
pr(q) If that is defined

Y(q) - where p is not in the range of F, if q-V(f)

.undefined otherwise

Then T is a one-to-one map over pointers (8)

-321-

(10) Let 7 be an entry with T(F) = T(f).and V(f) equals, if V(f) is not

a pointer, then V(f), else Y(V(f)). Then 3k; can be derived from

akf by replacing each entry gEakf with a similar entry whose

transfer is T(g) and whose value is, if V(g) is non-pointer, then

V(g), else Y(V(g)) (6)+(7)+(8)+(9)

(11) Rk c- a kf (l0)+(9)+Def. 5.1-3

(12) akr is in j (3)+(1l)+Const. 5.1-2

(13) T(f) - T(F) is in ETj(ak) (l0)+(12)+Def. 6.2-2

(14) oak - k is in J (2)+ind. hyp. A

(15) 9k is in J (14)+Ax. 6.2-2+Def. 4.2-7

(16) [3fEpk: T(l) - T(f)] or [T(f)EETj(akok)1 (15)+(13)+(14)+Lemma 6.2-1

(17) T(f)EETJ(akpk) 3h: RkPkhEJ Def. 6.2-2

(18) - k k =k is a proper prefix of a computation in J, and so is

not halted in J Def. 4.2-7

(19) T(f)IETJ(akPk) (17)+(18)+ind. hyp. B

(20) 31(pk: T(?) = T(f) (16)+(19)

(21) cok may be written as)k = aky?5 (14)+(20)

(22) T(!)fETj(3k) (13)+(20)

(23) akfZY is in J and is equivalent to aky'6, and ETJ(akfy&) -

ETJ(ya Y 8) (21)+(14)+(22)+Lemma 6.4-2

(24) Let Ek+Z - ail (2)+(3)+(20)

(25) Y6 - Pk- - - !- - w- k+l (21)+(14)+(2)+(24)

(26) Letting Pk+l - Y8, there is an cok+l = k+l-k+l "k 8 In J, which

is equivalent to akyf8 (Ok, and ETJ(cok+l) -ETJ(wk)

(25)+(2)+(24)+(23)

(27) A for wAk+l (26)

-322-

(28) C for (26)+ind. hyp. C

(29) N .+ is not halted 3g: N+lgEJ Def. 4.2-7

(30) -T(s)Mrj(a+ 1) Def. 6.2-2

(31) - T(g) (ETj(k) (26)

(321 - g: okegEJ Def. 6.2-2

(33) - i. is not halted in J Def. 4.2-7

(34) B for r,)+1 (29)+(33)+ind. hyp. B

(35) a i+ is transfer-congruent to ak+1 (2)+Def. 6.3-2

(36) For any structure operation execution e initiated in 'k+1 and any

Assign, Update, or Delete execution A, eER(A) in ak+1 - A is

initiated before e in k+l (3)+Ax. 6.2-1+Lema 5.3-8

(37) - A is initiated before e in alk+1 (2)+Def. 4.2-6

(38) eER(A) in a€+1 -A is initiated before e in ai

(24)+(23)+(2)+Axioms 6.2-2+6;2-1+Lemma 5.3-8+Def. 4.2-6

(39) a1 preserves the order of dependent accesses of ak+l

(36)+(37)+(38)+Def. 6.3-1

(40) ;1 is equivalent to ak+l; i.e., D for ak.1 (35)+(39)+Thm. 6.3-2

Thus it is proven by induction that w n is equivalent to co and an is

equivalent to a .
n

(41) a n - (' and Pn = - M x(2)+(l)
(42) o = - Pn M n (2)+(41)

(43) on is equivalent to co' D+(41)+(42)

(44) c is equivalent to w' (43)+C

Since this is true for any two computations in any one job in J,

(45) (Int,J) is determinate Def. 6.1-1

Q.E.D.

-323-

Chapter 7

Proof of the Functionality of LD

The purpose of this chapter is to demonstrate that any LD program

running on the modified interpreter M is functional. In accordance with

the plan presented at the beginning of Chapter 4, it will first be proven

that every expansion in the corresponding entry-execution model EE(LDM)

is determinate. Then it will be shown that the expansion of a program P

is determinate only if P is functional.

Chapter 6 has just concluded with a general result for any Structure-

as-Storage (S-S) model: An expansion is determinate if it satisfies the

Determinacy Axioms. Section 7.1 below verifies that EE(LD,M) is an S-S

model. Section 7.2 then proves that every expansion in that model satis-

fies the Axioms, and so is determinate. Finally, Section 7.3 demonstrates

that the construction of EE(LM) produces determinate expansions only

from functional programs.

-324-

7.1 Verification that EE(DM) is an S-S Model

An S-S model is defined fundamentally by a set of constraints on the

computations in every job from an entry-execution model. These con-

straints were synthesized from the schema model of LBS on the standard

interpreter, so that EE(LBsS) would satisfy them. Chapter 5 validates

this construction by proving analytically that EE(LBsS) is indeed an S-S

model. LD is a subset of LBS , and the modifications to the standard

interpreter did not change the actions performed by the structure oper-

ations. Therefore, it is to be expected not only that EE(LDM) is also

an S-S model, but that the proof of this is very similar to that for

EE(LBsS). A brief review of the principle of the earlier proof will

serve to motivate the steps taken in this section.

The first constraint is easily proven, and the second is a special

case (handled here is Section 7.1.2). The remaining five constraints are

verified by a three-step deduction: First, the constraints are satisfied

by every canonical computation, or pair of canonical computations, as

appropriate, in every job from EE(LBSS). For any two computations a1

and a2 in a job of interest, there is a pair of these canonical computa-

tions w1 and c2 such that:

A: For i1,2, for any execution e initiated in ai and any other

execution e2, eI is in reach R(e2) in a1 iffe is in R(e2) in co.

B: For any two pointers p1 and P2' (p 1 ,a 1)P(P 2 a 2) - (Plc'I)P(p2,c' 2)"

Finally, A and B imply that the five constraints, known to be satisfied

by wo1 and m2' mast hold for a1 and a2.

c02 1 .

-325-

The validation of EE(LD,M) as an S-S model is a similar deduction.

The first and third steps are identical to those just listed, and so the

proofs in Chapter 5 apply directly. The second step here requires an

extension of the technique used earlier. A and B hold between any two

pairs of computations a1, a2 and l' w2 if either, for i1-,2, ai is a

prefix of wi, or for i1,2, ci is SOE-inclusive of ai (Lemmas 5.2-6 and

5.3-10). Accordingly, the following chain of computations is exhibited:'

a - any computation in any job from EE(LDM)

- a computation in J S,2 where S is an initial modified state and 2

is a halted firing sequence starting in S, which has a as a prefix

S- r(S,2) - a computation which is SOE-inclusive of P (Lemma 5.2-7)

= (S,2'), where S' is the initial standard state corresponding

to S and 2' is a halted firing sequence starting in S' and having

2 as a prefix - a canonical computation from EE(LBSS) which is

SOE-inclusive of w (to be proven)

For any pair a1 and a2 the corresponding W1 and 6o satisfy the final

five constraints (Lemmas 5.3-3, 5.3-5, and 5.3-6). The general results

mentioned are applied to each successive pair of computations in the chain

to show that A and B are true of ai and ci. Then by Lemma 5.3-11, a1 and

a2 satisfy the five constraints.

The key task remaining here is to prove that w' is SOE-inclusive of

co. For any execution e - Ex(d,k) which has input entries in w, there is

tha prefix ekp of 2 in which 0 is the k firing of d, and each such input

entry describes the removal by (of a token in S'O. Since 9 is also a

-326-

prefix of 2', e will have input entries in w' describing the removal of

tokens in S''8. Similarly, e's output entries in w (co') describe the

removal of tokens on d's output arcs in S9(p (S'-et). Therefore, the

relation between e's input (or output) entries in w and o' depends on

the relation between S'0 and S''e (or S'&p and S'8p), which is eluci-

dated in Section 7.1.1 below. Section 7.1.2 then presents the result

that, as on the standard interpreter, any two equal firing sequences

starting in equal modified states yield equal final states. This is of

immediate importance in the special case of proving that every job

satisfies the second (Pointer Transparency) constraint. It is also used

extensively in showing that every expansion satisfies the Determinacy

Axioms. Section 7.1.3 then proves that co' is SOE-inclusive of co; the

proof that EE(LBSS) is an S-S model is then easily extended to verify

that EE(LDM) is an S-S model.

7.1.1 A Comparison of Standard and Modified States

The purpose here is compare the states of the standard and modified

interpreters when started in corresponding initial states and subjected

to the same sequence of firings. The form of a modified interpreter

state, as detailed in Section 3.3, differs from that of a standard state

in two regards: the replacement of simple pointers as values of tokens by

read and write pointers, and the presence of a pool component Q.

Paralleling these are the following differences in content between an

initial modified state S and its corresponding initial standard state S':

every token with pointer value p in S' is replaced with one with value

(p,R), and the pool component in S is empty.

-327-

Any firing sequence 2 starting in S is an abbreviation for a sequence

of states beginning with S. Each state in this latter sequence is

obtained from the immediately-preceding one by an application of the

state-transition rule. Assuming that 2 is also a firing sequence starting

in S', the differences in content between the resulting final states S'2

and S'*2 are determined by differences in the state-transition rules of

the two interpreters. The standard rule was modified just in that the

data tokens output by a firing of a Select actor may be withheld.

Specifically, if a firing of a Select actor labelled S would output a

pointer p on the standard interpreter, and there are tokens of value (p,W)

in the current configuration, then no data output tokens appear, and S is

placed in the pool Q(p). S remains in Q(p), and the data-output arcs

remain empty, until all tokens of value (p,W) have disappeared. Then S

is removed from Q(p) and tokens of value (p,R) are placed on the data-

output arcs of the actor labelled S.

From this, it is expected that these differences in content between

S,2 and S',2 would be observed:

(1) Every arc which holds a token of value (p,R) or (p,W) in S'2 holds

a token of value p in S'2.

(2) For every label S in any pool Q(p) for a pointer p in S'2, the

data-output arcs of the actor labelled S are empty.

Point (2) implies that the data-output arcs of the actor labelled S

necessarily hold tokens of value p in S'-', by the following reasoning:

2 can be written as OeM, where p is the last firing of S in 2. Since S

is in Q(p), that firing would have output tokens of value p on the

-328-

standard interpreter; hence, there are such tokens in the standard state

SO* N. For any prefix X of A, the data-output arcs of S in S'epX remain

empty, so there can be no firing in A which removes a token from one of

those arcs on the modified interpreter. Therefore, there is no firing of

an actor in A which removes a token from one of those arcs on the standard

interpreter, so there are still tokens of value p on the data-output arcs

of S in S'*2. Any standard and modified states of the same program which

are so related are congruent, as defined in the following:

Definition 7.1-1 (Congruent states) Given any LS program P, let

s = (mu,Q) be any modified state for P and let S' = (r',U') be any

standard state for P. For any arc b in P, the conditions of b in S and SO

match to within withheld outputs iff:

a. if b is a data-output arc of a Select operator labelled S and there

is a pointer p such that S is in Q(p), then b holds a token of value

p in r, and is empty in r;

b. otherwise, either

i. b is empty in both r and r', or

ii. b holds tokens of non-pointer value v in both r and r', or

iii. b holds a token of pointer value p in r' and a token of value

(p,R) or (pW) in r.

S and S' are congruent, written S'PS' iff

1. U and U' are identical, and

2. for each arc b in P, the conditions of b in S and S' match to

within withheld outputs. AX

-329-

Now it can be shown that a given firing sequence takes any initial

modified state and its corresponding initial standard state into

congruent final states:

Theorem 7.1-1. Let S be any initial modified state for any L BS program P

and let S' be the corresponding initial standard state. Let 2 be any

firing sequence starting in S on the modified interpreter. Then

A: Q~ is also-a firing sequence starting in S' on the standard

interpreter, and

B: S'-2piS2.

Proof: (The proof of this is simply an exhaustive demonstration that,

except for the differences noted, every firing of an actor has the same

effects - on the heap, its input arcs, its output arcs, and all other

arcs - on the two interpreters; thus, it is relegated to Appendix E.)

Corollary 7.1-1 Let S be any initial modified state for any LBS program

P, and let 0 be any firing sequence starting in S. Then for any label d

of a Select operator in P, if d is in a pool in Se0, then all of the data-

output arcs of that operator are empty in 58G.

Proof: Let S' be the initial standard state corresponding to S. Then

S'',6PS-O [Thin. 7.1-l1. The Corollary follows from this and Def. 7.1-1.

7.1.2 Pointer Transparency

The Pointer Transparency Constraint is the only non-trivial

constraint which does not lend Itself to a proof in the form discussed at

the start of Section 7.1. In co,on with the others, however, the proof

-330-

that every Job satisfies this constraint parallels the corresponding

portion of the validation of EE(L3 s,S). The heart of the latter is

Theorem 5.3-1: for any two equal standard states S1 and S2 , and any two

equal firing sequences 2i starting in S and 22 starting in $2, $2'2

equals Sl12 . Developing an analogous result for the modified interpreter

requires first a definition of equal modified states.

Two standard states S, and Si for program P are equal iff there is a

one-to-one mapping I such that, for every arc b in P,

Match((b,S), I, (b,S)). The first of the two ways in which the form

of a modified state differs from that of a standard state is the presence

of read and write pointers, which are distinct; i.e., (pR) # (p',W), even

if p - p'. An appropriate definition for matching conditions of an arc

in two modified states has already been presented as Definition 3.4-1.

The second difference in form is the pool component in a modified state.

Intuitively, the pool components Q1 and Q2 of two states SI and S2 are

equal only if, for every Select label S, 3p1 : SEQ 1 (p) -
3P2 : S(Q2(p2).

Furthermore, if S is in a pool in both Q and Q2 9 then the pointers p1

and P2 must be related: Eventually, S will be removed from those pools,

and tokens of value (pl,R) and (P2,R) will be placed on its data-output

arcs; in order that the conditions of those arcs match at that time, p1

and P2 should point to equal components of the heaps in S1 and S2 . This

is made precise in the following complete specification of two equal

modified states:

Definition 7.1-2 Two modified interpreter states S 1 - (r1,U 1,Q1) and

S 2 - (r2,U2,Q2) for the same program P are equal iff there is a single

-331-

one-to-one mapping I such that:

1. For every arc b in P, Hatch((bS 1), I, (b,S2)).

2. For every label S of a Select operator in P, letting U1 - (N1 ,11,SM1)

and U2 - (N2,f2 ,SM2),

3p1: SEQ1 (p) - 3P2: SEQ2(p2) s U2 .n 2 (P 2) I IT 1 l(pl).

The proof that equal firing sequences 21 and S2 starting in equal

initial modified states S1 and S2 yield equal final states proceeds

indirectly through standard states. That is, the initial standard states

S and S2 are equal to each other, so S.2 1

equals S'2 2 Since S12 1t"i2 1 and S-2 2 " 2 , it is easily shown thateus 2 -2 Since S 1 *22

the condition of any arc b which holds a token in S2'22 matches its

condition in SI.21 : If b holds a token of non-pointer value v in S2" 2,

then it does so in Si22 (by congruence), in S1 1 (by equality of stan-

dard states), and in S,2l (by congruence again). If b holds a token of

value (p2,R) or (p2,W) in $2"22' then it holds a token of value P2 in

SS222 one of value pl, which points to an equal component, in S21, and

one of value (plR) or (p1 ,W) in SI 21. All that remains to show a match

is to prove that b holds either a write pointer in both states or a read

pointer in both states.

Proof that the pool components are equal is by an induction based on

the following: For each prefix e 1 of 21, the last firing (p causes a

Select label S to be placed into a pool QI(p 1) iff, for the same-length

prefix e202 of 22' (2 causes S to be placed in a pool Q2(P2). Pointers

p1 and P2 are those which would be placed on the output arcs of the actor

labelled S by Ol and (2 on the standard interpreter; since S .2q22 equals

-332-

St. 81P1 P1 and p2 point to equal components. Finally, every arc holds a

pointer (pl,W) after a prefix of 91 iff it holds a pointer (p2,W) after

the same-length prefix of 22, so S is removed from the pools after the

same-length prefix of each firing sequence.

Theorem 7.1-2 For any two equal modified states S 1 and S2 for the same

LBS program P, and for any two equal firing sequences 21 starting in S1

and 2 2 starting in $2,2' 22 equals SI 2 I . Furthermore, if I is the

mapping under which the conditions of each arc b in P match in S2 and S1.

then the mapping under which the conditions of b match in S 2 *22 and SI' I

is IU{(nln 2)I 3k:for 1-1,2, nI is the node in the kth Copy firing in 2i}.

Finally, the initial standard states corresponding to S and S2 are equal.

Proof:

(1) For any modified configuration r, let DT(r) denote the configuration

obtained by replacing each token in r of value (p,R) or (p,W),

where p is a pointer, with a token of value p. Let Sx M (r..UxQx)

and Sy (r y,U y,Q y) be any two modified states for P which are

equal under a mapping K. Then (DT(rx),U x) and (DT(r y),U y) are

standard states Defs. 3.3-4+3.3-3+2.1-3

(2) For each arc b in P, Match((bSx), K, (bS y)) (1)+Def. 7.1-2

(3) Letting U - (N ,7 ,SM) and Uy (N ,SN), either b has no token
x Xxxx y yy y

in r and ry, or b has tokens of non-pointer value v in both r

and ry , or there are pointers p1 and P2 such that b has tokens of

values (pl,') and (P2,R), or (pl,W) and (p 2,W), in rx and ry, and

Uy.f'y(P 2) U xdnx(pl) (2)+Defs. 3.3-3+3.4-1

-33 3-

(4) Either b has no token in either DT(l' or DT(r),or b has tokensx y

of non-pointer value v in DT(r x) and DT(r y), or there are pointers

p. and P2 such that b has tokens of value p, and P2 in DT(r.) and

DT(r y) and Ux~fl,(P1) K Uy'fly(P2) (1)+(3)

(l)+(4)+Def. 2.4-2

(6) (DT(r),U x) equals (DT(r y),u) under K (5)+Def. 2.4-3

(7) For 1-1,2, let S (r, 1Q) where U1 (N11fl1,SH1). Then the

initial standard state. corresponding to SIis (DT(r1).U1), so

the initial standard states corresponding to S 1 and S2are equal

under I (l)+(6)+Def. 3.3-5

Prove the rest of the Theorem by induction on the length of a1V

Basis: le11 - 0.

(8) 1221 -0 Def. 2.4-5

(9) S2.22 - S2 and S 1
2l a 61 (8)+Def. 2.3-1

(10) I~{(n 1,n2)1 3k:for 1-1,2, ni is the node In the k thCopy firing

in 2,) ft1 (8)

The Theorem follow from (9) and (10) plus the hypothesis.

Induction step: Assume that the Theorem is true for any 921 and a22 of

length n ? 0, and consider equal firing sequences 91(p, and 2 of

length n+l, in which Olis a firing of actor d.

(11) 02 is also a firing of d, and 21 and 22 are equal firing sequences

of length a Def. 2.4-5

(12) 9 1 is a firing sequence starting in S(ll)4Def. 2.3-1

(13) Use the following notation, for i-1,2:

-334-

Fire (S *21.d) -(rj.UjS), where U'l - (ii,~'

S1 i 21 (ri.",Q"), where Ull - (N MPj.S~

Denoe by the configuration Standard ((Striprd)i,)

Denote by I+ the map IU{n 1,n2 J k for 1-1,2, n1 is the node in

the k th Copy firing in 2i} and by I* the map U{(nl,n 2)l1 3k:

for 1-1,2, na1 is the node in the k th Copy firing in i)

(14) S 222 equals 5 fL21 under I(12)+(13)+ind. hyp.

(15) For 1-1,2, let S -(DT(r 1),Ui). Then s I is a standard state, and

S_ equals S -under I + (14)+(l)+(6)
2 1

(16) d is enabled in S2 *92 and in S l'21 (ll)+Def. 2.3-1

(17) The distribution of tokens on d's input and output arcs in .

hence In DT(r.) conforms to the enabling conditions for d

(16)+(1)+Def. 3.3-6

(18) d is enabled in S2 and in S 1 (17)+Def. 2.1-4

(19) 92 and (p, are two equal, length-i firing sequences starting in S2

and S_ (11)+(18)4Defs. 2.4-5+2.3-1
1

(20) S;.*(2 equals5 5 1 -p1 under I Uf(n 3n 2)1 3k: for 1-1,2. n I is the node

in the k th Copy firing in V)- I *(15)+(19)+(13)+Thm. 5.3-1

(21) For any configuration r, heap U, and actor d, the values of the

tokens on d's output ares in Standard r((rU,d) depend only on

the values of the tokens on d's input arcs in r and on U, and, if

d is a Copy, on the arbitrary pointer-node pair added to TI

Defs. 2.1-5+2.2-5

(22) S I (Pi a (Standard r((DT(r i) ,U I) ,d) ,StandardU((DT(ri)' , 1) ,d))

(19)+(11)+(15)+Defe. 2.3-1+3.3-7

(23)Ui - StandardU((Strip(ri~d),Ui).d) (13)+Def. 3.3-9

-335-

(24) d is a Select its input arcs hold tokens of the same value in

DT(r) and Strip(r,,d) (lO4Oef. 3.3-8

(25) A StandardL,((DT(r1),U i),d) - U i Def. 2.2-5

(26) :-U' - Ui (23)+Def. 2.2-5

(27) d is a Select A there is a pointer on a data-output arc of d in

either rsor ro m there is a pointer on a data-output arc of d in

eiter tanardr (DT(1),U 1),d) orStandard r((DT(r 2)U U2) ,d)

(13)+(21)+(24)

(28) =*there are two pointers p1 and P2 such that there are tokens of

value pi on d's data-output arcs in Standard r((DT(ri),U i),d) and

U 2.fl2(P2)3 . U1J11 (pl) (22)+(25)+(20)+Defs. 2.4-3+2.4-2

(29) -there are tokens of value p~ on d's data-output arcs in rSand

U2"n2'(p 2) .Ul.frl(p 1) (13)+(21)+(24)+(26)+Def. 2.4-1

(30) For any actor c, 3p 1: EQ 1 (r') if 3P2 c(EQ 2(p2) and if so,

r1 2(P2) - 1.+(n 1 0 1)) (14)+Defs. 7.1-2+2.4-1

(31) For any actor c, 31)1: cEQ,'(pl) 1ff 3p,1: cEQ,(pl) or c - d is a

Select A 31)1: p1 is on the data-output arcs of d in r'l Def. 3.3-9

(32) 1ff 31)2: cEQ2(p2) (30)

(33) or c - d is a Select A 3p2p 2 is on the data-output arcs of d inr2

(27)+(29)

(34) 1ff 3P2: cEQ2(P2) Def. 3.3-9

(35) There are pointers p1 and P2 such that c(Qj(pi) cEQ,(p,) or

c - d is a Select and there are tokens of value p on data-output

arcs of d in r8Def. 3.3-9

(36) -since T1 is a subset of f7lII fl(P 2) - +Gnl'(pl))

(30)+(23)+Def. 2.2-5

-7

-336-

(37) V U,.fl,(p 2)1 (27)+(29)
2 -e2 22.4-1,Pl

(38) -n (p2) - 1 (rfl(p 1)) or fl2'(p2) - '*(fl'(pl)) Df .-

(39) -since I1+ is a subset of I n;T 2 (13)~(1)

(40) Let Sand S2be the initial standard states corresponding to S

and S2 Then, for 1-1,2, 2ilpi is a firing sequence starting in i

and S . pSi ip*i(, Thim. 7.1-1

(41) S 2 *2 2 2 equals sl"lp under I ,which is one-to-one

(7)+(40)+(13)+Thm. 5.3-1

(42) For any input arc b of d, b has a token in if f d is a merge

gate whose control input in Strip(ri,d) is false (true), b is its

T (F) input arc, and b has the same token in Strip(ri,d)

(13)+Defs. 3.3-7+2.1-5

(43) For any arc b, 3p: b has a token of value (p,W) in r J p: b

has a token of value (p,W) in 1*.and [b is an output arc of d and

d is a Copy or Select -b is a number-i output arc of a Copyl

Def. 3.3-9

(44) [b is an output arc of d and d is a Select or Copy - b is a

number-l output arc of a Copy] and either [3p: b is neither an

input nor an output arc of d and b holds a token of value (p,W)

in Strip(r,,d)J or [3p: b is an Input arc of d and holds a token

of value (p,W) in e.) or [3p: b holds a token of value (pW) in

1"- and b Is an output arc of d, so d is either a Copy, Select,

or p1 operator] Defs. 2.1-5+2.2-5

(45) - either

(45a) 3p: b holds a token of value (pW) in Strip(rld), and either b

is not an input or an output arc of d, or d is a merge gate whose

--- 337-

control input in Strip(r1 ,d) is false (true) and b is d's T (F)

input arc, or

(45b) b is a number-i output arc of d and d is a Copy, or

(45c) 3p: b is an output arc of d, d is a pI operator, and b holds a

token of value (p,W) in a (42)

(46) (45a) = since a gate is a pI actor, 3p: b holds a token of value

(p,W) in r1 , and either b is not an input or output arc of d, or

d is a merge gate whose control input in r is false (true) and

b is its T (F) input arc Def. 3.3-8

(47) - 3p': b holds a token of value (p',W) in r2 and either b is not

an input or output arc of d, or d is a merge gate whose control

input in r2 is false (true) and b is d's T (F) input arc

(14)+Defs. 7.1-2+3.4-1

(48) - 3p': b holds a token of value (p',W) in Strip(r 2,d), and either

b is not an input or output arc of d, or d is a merge gate whose

control input in Strip(r2,d) is false (true) and b is its T (F)

input arc Def. 3.3-8

(49) -3p': b holds a token of value (p',W) in r, hence in r'

(42)+Defs. 2.1-5+3.3-9

(50) (45b) - 3p': there is a token of value (p',W) on b in 2 Def. 3.3-9

(51) (45c) - 3p: there is an input arc of d which holds a token of value

(ppW) in Strip(rd), hence in r1 , and if d is a T- (F-)gate, its

control input arc in Strip(rl,d), hence in rl, is true (false)

Defs. 3.3-8+2.2-4+2.1-5

(52) - 3p': there is an input arc of d which holds a token of value

(p',W) in r2, hence in Strip(r2 ,d), and if d is a T- (F-)gate, its

-338-

control input in r %hence in StripU' 2,d), is true (false)

(14)+Defs. 3.3-8+7.1-2+3.4-1

(53) 3p': b holds a token of value (p',W) in rahence inr

Defs. 2.2-4+2.1-5+3.3-9

(54) For any arc b, 3p: b holds a token of value (p,W) in r' - 3 p': b

holds a token of value (p',W) in r '2
(43)+(45)+(46)+(49)+(50)+(51)+(53)

By synmetry,

(55) For any arc b, 3p: b holds a token of value (p,W) in q' - 3p': b

holds a token of value (p',W) in r' (43)-(54)

(56) For any arc b, 3p: b holds a token of value (p,W) in rq 1ff 3p: b

holds a token of value (p,W) in r (13)+Def. 3.3-9

(57) 1ff 3p': b holds a token of value (p',Q) in r(54)+(55)

(58) if f 3p': b holds a token of value (p',W) in qre.".-

(59) The heap in Si2 is 1"- UT, (13)+(40)+Defs. 7.1-1+3.3-9

b is empty in both r1andr2 or

b has tokens of non-pointer value v in r1and r 2P or

there are pointers p1 and p 2 such that b has a token of value p

in r and U211.r129(P 2) - 11 lp) (59)+(41)+Defs. 2.4-3+2.4-2

(61) For every arc b in P, [b is a data-output arc of Select S there is

Fno pointer p such that S(Q"(p) or SEQ'"(p)] -either

b is empty in both r" and ror
1 r2,o

b has a token of value (p1,,R) or (p13W) in qand

-339-

U2.f-2(p 2) '1 17411(pI) (13)+(40)+Def. 7.1-1

(62) [3pl: b has a token of value (pl,W) in r1' 3P2: b has a token

of value either (P2 R) or (p2,W) in r and u".n"(p 2) - u'j.nI(p 1)

, b has as token of value (p2,W) in r"and U .r (p2) I, U'.fl(pz)i

(56)+(58)

(63) A [3p1 : b has a token of value (pl,R) in rl = P2: b has a token

of value (p2,W) in F 3P2: b has a token of value (P2,R) in

and Uun.(p 2) U'.rT(pl)] 56)+(58)

(64) - Match((b,(r,U'I,Q')), I** (b.(r',U,',Ql))) Def. 3.4-1

(65) For any Select operator c, 3p2 : cEQ' (p2) - 3p2 : cEQ2(p 2) and there

is an arc a in p which holds a token of value (p2,W) in q.

hence in r" (13)+Def. 3.3-9
2

(66) = 3p1: cEQ (pI) and r1(p 2) - I*(n!(pI)) (31)+(34)+(35)+(39)

(67) A a is not a data-output arc of a Select operator Def. 3.3-9

(68) = there is a pointer P3 such that a has a token of value (p3 ,W)

in r', hence in r and U'.l'(p2) I U,.f'n(p 3)

(65)+(61)-(63)+Def. 3.3-9

(69) =n(p2) = I*(fl(pl)) and fl'2(p2) - I (n"(p3)) (66)+Def. 2.4-1

(70) = (p2) - (*1(P1)) and nl(p 2) - I (IT'(P 3)) (59)

(71) - P1
= p3 * since I , nI, and ' are one-to-one (41)+Def. 2.2-1

(72) - c(Qj(pl) and there is an arc which has a token of value (pl,W)

in r'l (66)+(68)

(73) - Q'(pl) and U".nI(p2) n U'.nf(pl) (71)+(68)+Def. 3.3-9

By symetry,

(74) 3p,: cEQ'1(p) 3p2: cEQ' 2 a 2.fl2(p2) U 1.(pI)

-340-

(75) For any arc b, b is a data-output are of a Select operator S and

there is a p such that either SEQ'(p) or SEQ(p) ! there are

pointers p1 and P2 such that SEQ 1(p,) and SEQ"(p2) (65)+(73)+(74)

(76) .e b is empty in both r" and r (40)+Def. 7.1-1

(77) For any arc b in P, Match((b,S 2 2), I*, (b,S 1 -21 P1))

(13)+(60)+(64)+(75)+(76)+Def. 3.4-1

(78) S equals SIl I, under I (77)+(65)+(73)+(74)+Def. 7.1-2A
This fundamental result will have many important applications in

this chapter, the first being in the proof that every job from EE(LDM)

satisfies the Pointer Transparency Constraint. This is composed of one

Corollary and one Lemma, whose statements are identical to those developed

in the validation of EE(LBs,S) and whose proofs are so similar that only

the differences are noted here.

Corollary 7.1-2 Let S1 be any modified state for an LS program P, and

let 2] be any firing sequence starting in S1 . Let S2 be any modified

state equal to S1, and let "2 be any firing sequence equal to 21" Then

A: Each actor in P is enabled in S2 iff it is enabled in Si.

3: If the multiset AP of the pointer-node pairs in the Copy firings

in 2 2 is consistent with the heap in $2' then 22 is a firing

sequence starting in $2' and 22 is halted iff 2 1 is halted.

Proof: Identical to the proof of Corollary 5.3-1 with the following

exceptions:

Lines (1) through (4) should read

I _________ _______________________________________

-341-

(1) There is some one-to-one mapping I under which, for each arc b in P,

Match((b,S2), I, (b,Sl)), and, letting the pool component in S be

Q i1,2, for each actor d, 3p: dEQI(p) - 3p': dEQ2(p') Def. 7.1-2

(2) For each actor d in P, each input and output arc of d has a token in

S2 iff it has a token in S1 (1)+Def. 3.4-1

(3) Enabling conditions for d depend only on the presence or absence of

tokens on d's input and output arcs and on whether or not d is

in a pool Defs. 3.3-6+2.1-4

(4) d is enabled in S iff d is :enabled in S1 (3)+(2)+(1)
21

Line (15) is replaced by the two lines:

(15a) - letting S2"02 be (m,U), (pn) cannot be added to F in going from

U to Standard u((Strip(r,d),U),d) Def. 3.3-9

(15b) - letting U = (NI,,SM), pEdom 17 or nEN Table 2.2-1

A
Lemma 7.1-1 Let (IntJ) be any expansion from EE(LD,M). Then every

job JEJ satisfies the Pointer Transparency Constraint.

Proof: Identical to the proof of Lemma 5.3-2 with the following

exceptions:

Line (3) should read:

(3) (Int,J) is the expansion of some LD program P. which is aleo an NS

program, and J - JE for some equivalence class E of initial

modified states for P Defs. 3.3-12+4.3-1+4.3-2

The following substitutions are made:

Thin. 7.1-2 for Thm. 5.3-1

Cor. 7.1-2 for Cor. 5.3-1

Def. 7.1-2 for Def. 2.4-3

t!

-342-

Def. 3.4-1 for Def. 2.4-2

in the justifications for lines (7), (8), (16), (18), (19), (20), (31),

(57), and (59).

For i1-,2, the phrase "token with value vi" is replaced with "token

with value v , (vi,R), or (viW)" in lines (6), (19), (34), (37), (40),

and (41).

Line (13) is replaced with the two lines

(13a) - (p,n) could not be added to H' in going from U' to

Standard u((Strip(r' ,d) ,U') ,d) Table 2.1-1

(13b) - (p,n) could not be added to H' in going from SI'0 to S1 0(P

Def. 3.3-9

A
7.1.3 Relation Between Canonical Computations in EE(LD ,) and EE(Las,S)

As explained at the start of this section, the major new development

used to validate EE(L DM) as an S-S model is the following assertion:

For any initial modified state S and halted firing sequence 2 starting in

S, there is an initial standard state S' and halted firing sequence 2'

starting in S' such that rI(S',2') is SOE-inclusive of rI(S,R). The prime

candidate for S' is the initial standard state corresponding to S, for

that is as closely related to S as any standard state can be. It has

already been shown that 2 is a firing sequence starting in S' and that

S'*248*2. Unfortunately, 2 cannot always be used for 9', because it may

not be a halted firing sequence starting in S'. This occurs in the case

that S'2 is hung-up; i.e., has a non-empty pool component.

-343-

7.1.3.1 Hang-Ups

An example of a hung-up modified state is shown in Figure 7.1-1.

C

is#

Copy

1U Un

Update

Q(p) - fs}

Select

,Update

A Hung-Up Modified State

Figure 7.1-1

" I .. I ...

I

-344-

This depicts the result of the firing sequence 2 = (C,(pn)), U1, R, S

starting in some initial modified state S. The firing of C activated node

n, the pointer to which is p, and left tokens of value (pW) on C's output

arcs. The firing of U1 had as inputs q, the pointer to a second node m,

selector psi, and p; its effect was to make n the 's'-successor of m.

The firing of S also had q as its pointer input and its selector input

happened to be 's'. On the standard interpreter, that Select firing would

output a token of value p, enabling U2 ; therefore, 2 starting in the

corresponding initial standard state is not halted. On the modified

interpreter, however, the label S is placed in Q(p) at the firing of the

Select, and is not immediately removed because of the presence of the

write pointer (p,W). Therefore, U2 is not enabled in S'2, and 2 starting

in S on the modified interpreter is not halted.

Figure 7.1-2 demonstrates why an unhalted 2 cannot be used as 2'

(i.e., why -9(S',2) is not necessarily SOE-inclusive of I(S,2)). It

displays the same program as above with the addition of a First and

another Select. A halted firing sequence for th~s program starting in

any initial modified state S is 2 - (C,(p,n)), U1, R, S1, F. As above, 2

is not halted when starting in the corresponding initial standard state S',

because there will be tokens on both of Sl 's output arcs, enabling U2 and

S Since 2 is halted, the token left on F's number-1 output arc b in

S-2 causes n(S,g) to have an entry whose transfer has source

Source(b,S,Q) - Src(Ex(F,1),l). Because 2 is not halted starting in S',

however (and no firing in 2 removes a token from F's output arc), rI(S',g)

will have no entry whose transfer has that same source. I.e., e Ex(F,l)

-345-

C

Copy

U
n

Up atCiclHaU

Fiur 7.1-2s

-346-

has output entries in y(S,2) but not in r(S',s). Thus, 2 cannot be used

as g', for at least the superficial reason that r(S',2) is not SOE-

inclusive of n(S,Q).

There is a deeper reason that S is unsuitable, the reason for inclu-

ding the requirement for inclusive sets of output entries in the defini-

tion of SOE-inclusive: The output entries of e in n(S,g) may be con-

strained to have a certain value. The technique being used to prove that

they do relies on the existence of another, SOE-inclusive computation in

which the output entries of e are known to have the constrained value.

Then since the output entries of e in -(S,g) have the same value, they

satisfy the constraint. Clearly this deduction would break down if there

were no output entries of e in the SOE-inclusive computation.

Fortunately, the possibility of hang-ups on the modified interpreter

does not invalidate any of the results of this thesis. In particular, for

any halted firing sequence 21 starting in any initial state SI of an LD

program, if Sl'2l is hung-up, then for any other halted firing sequence 22

starting in any state S2 equal to Sl S 2'22 is a hung-up state which is

equal to S 121. I.e., LB programs are functional on the modified inter-

preter, independent of the issue of hang-ups. Furthermore, the transla-

tion from LV programs to equivalent LB programs (Algorithm 3.4-1)

produces programs which do not hang up.

7.1.3.2 Discovering the SOE-Inclusive Computation

For each initial modified state S, corresponding initial standard

state S', and halted firing sequence g starting in S, TI(S',2) is not

necessarily SOE-inclusive of r(S,2). This is because even though 2 is a

-347-

firing sequence starting in S', it might not be halted, if S12 is a hung-

up state. 2 is however a prefix of a halted firing sequence 2' starting

in S'. For any such 2', w' - r(S','.) is SOE-inclusive of a) - T(S,)

(Definition 5.2-8), as the following argument shows.

The computation r(S' ,2) is a prefix of w'. It is apparent from

Algorithm 4.3-1 that all structure operation executions initiated in W

are initiated, in the same order, in rj(S',2), hence in w'. For any non-

pl execution e = Ex(dk), let ft be the prefix of 2 (and 2') in which (p

th
is the k firing of d. Then there is an entry Ent(ej) of value v in w

= there is a token of value v on d's number-J input arc in S'6 which is

removed by p = there is a token of value v on that arc in S''8 which is

removed by 9 (since S"S.e) = there is an entry Ent(e,j) of value v in

o'. For any Copy execution Ex(d,k) initiated ini w, there is a kth firing

of operator d in 2, so there is a prefix e of 2 containing k firings of d

such that there are tokens on d's output arcs in S'0. Each such token

keeps d disabled from firing a k+lst time until it is removed (if ever).

Therefore, either it is removed by a subsequent firing in 2 which precedes

the k+lst firing of d, or it is left in the final state S'2 and there are

just k firings of d in Q. In either case, there are output entries of

Ex(d,k) in w (Lemma 7.1-2 below).

Finally, let f be any entry in co, let V(f) be v, and let the source

in T(f) be Src(Ex(d,k),i). The target of f is an execution of an actor

in P -a there is a prefix ft of 2 such that there is a token of value v on

an output arc b of d in S'8 which is removed by the imediately-following

firing, and Src(Ex(d,k),i) - Source(b,S,O) - since S'eOgS-, there is a

token on b in S'*e which will be removed by the next firing, and since

-348-

both Source(b.S,0) and Source(b,s',e) depend primarily on the number of

firings of d in 0, they are equal (Lemma 7.1-3 below) = there is an entry

in w0' with value v whose transfer has the same source as T(f). The target

of f is a dummy output execution - there is a token of value v on b in

S'2 and there are k firings of d in Q - since S'*2p,5-2, there is a token

of value v on b in S'"Q = d cannot fire a k+lst time in 2' until that

token is removed = either the token is removed by a subsequent firing in

2' and k firings of d precede that removal, or the token is left on b in

S'. 2 and there are k firings of d in 2' = there is an entry in w' with

value v whose transfer has the same source as T(f).

The two lemmas cited above are proven first, each in a more general

form which can be used in succeeding sections:

Lemma 7.1-2 Let S be any initial modified state for an LBS program P, and

let 2 be any halted firing sequence starting in S. There is a Copy firing

(d,(p,n)) in 2 if and only if there are entries in n(5,2) with value p

whose transfers have source Src(Ex(d,k),i) for some I, where (d,(p,n))

is the kth firing of d in 2.

Proof: Prove "only if" first.

(1) Let E be the prefix of 2 in which the last firing is (d,(p,n)).

Then in S*E there are tokens of value (pR) or (pW) on d's

number-1 or number-2 output arcs. Let v be the value of one of

those tokens Defs. 2.1-2+2.3-1+3.3-9

(2) Let 0 be the longest prefix of 2 such that for every prefix A Of 0,

1 <1 : JAI, there is a token of value v on b in S'A. Then d Is

not enabled in S'A Defe. 3.3-6+2.1-4

-349-

(3) Every firing of d in e is in S, so there are k firings of d in e

(2)+Def. 2.3-1

(4) G is not halted -, letting p be such that ft is a prefix of 2, (p is

not a firing of d (2)+Def. 2.3-1+Cor. 7.1-1

(5) - there is not a different token on b in S'0p than in SO Def. 3.3-9

(6) - there is no token on b in SOc; i.e., a token of value v was

removed in going from S'O to S'(p (2)

(7) - there is an entry in rI(S,Q) with value p whose transfer has

source Src(Ex(d,k),i) for some i (1)+(3)+A18. 4.3-1

(8) e is halted - 0 - 2 - there is a token on b of value v in S*2sorercxdk)ifrsmei(+(+A.43-

there is an entry in q(S,2) with value p whose transfer has source

Src(Ex(dk),i) for some i (1)+(2)+(3)+Alg. 4.3-1

INow prove "if".
(9) There is an entry in r)(S,2) with value p whose transfer has source

Src(Ex(d,k),i) for some i, where d is a Copy operator - there is a

prefix A(p of 2 containing exactly k firings of d such that tokens

of value (p,R) or (p,W) appear on d's number-i output arcs at the

transition from S*A to S-A(p Lemma 4.3-1

(10) (p is a firing of d which outputs tokens of value (p,R) or (p,W)

Def. 3.3-9

(11) - (p is (d,(p,n)), and is the kth firing of d in 2 Def. 2.3-1

.Leuma 7.1-3 Given any LS program P, let b be any arc in P. Let S1 and

S 2 be either any two equal initial modified states of P or one initial

modified state and the corresponding initial standard state. Let 1 and

e2 be any two firing sequences starting in S1 and S2 respectively such

'-t

-350-

that there is a token on b in both S * ()1and S20*if

(1) b is an output arc of an actor =* there are the same number of

firings of that actor in 61I and e 29

then Source(b,s51,e1) - Source(bS 2 '02). Furthermore, letting

Source(b,S1,.O1) be Src(Ex(c',n),i), if c' is in DL, then b is an output

arc of actor c -* there are zero firings of c in 61.

Proof:

(2) For any prefix E2p of 6i1 (6)2), there is a token on b in S 1 *Ek

(2 &)which is not on b in S 1 - (S 2 *2) -* b is an output arc of

an actor d and either (p is a firing of d or there is a pointer p

such that dEQ(p) in S I - (S 2 ') and b is a data-output arc of d

Defs. 3.3-9+3.3-7+2.1-5

(3) b is not an output arc of any actor - 31: b is the number-i program

input arc of P Def. 2.1-1

(4) A there is no prefix Fcp of 6 1 (62) such that there is a taken on b

in S1*Scp (S 2 Ep) which is not on b in S -v (S -v) -* the token on

b in S1 * i (S2* is on b in S 1 (S 2) (2)

(5) -Source(bS.,) Source(b,S2 2 0 Sre(Ex(IDO),i) (3)+Alg. 4.3-1

(6) Assume b is an output arc of an actor d. Then b is not a program

input arc Def. 2.1-1

(7) There is no token on b in S1 (S the token on b in S * (S262)

is not on b in S1 (S)

(8) There Is a firing of d in 6 1 (6 2) there is a prefix E of 6 1 (02)

such that d Is enabled in S -v (S22 Def. 2.3-1

(9) -there io no token on b in S1 * (S -w) -the token on b in *

-351-

(S))is not on b in S1 2)(6)+Defs. 3.3-6+2.1-4

(10) There is a token on b in s1 (s) b is a control arc -hbis not

a data-output arc of a Select (6)+Defs. 3.3-5+2.2-6

(11) There is a token on b in S, (S2) and there are zero firings of d in

(0 (2) there is no prefix ap of 6 1 (02 such that the token

on b in S1-Ep (S2 -Ep) is not on b in S,* (S2-9) as the token on

b in Sl1ol (S2 .02) is on b in S1 (S2) (10)+(2)

(12) The token on b in S 1l01 (S:2 92) is on b in Sl (S2 iff there is a

token on b in S 1 (s 2) and there are zero firings of c in 6 1 (062)

(7)+(8)+(9)+(11)

(13) The token on b in S,1is on b in S I iff there is a token on b

in Sl and there are zero firings of d in 6 1 (12)

(14) iff there is a token on b in S 2 Defs. 7.1-2+3.4-1+3.3-5

(15) and there are zero firings of d in 6 2 (6)+(l)

(16) iff the token on b in S 2 *02 is on b in S 2 (12)

(17) The token on b in S 1*1 is on b in S 1 =*Source(b,S1 .1) is

Src(Ex(IT,0),1) or Src(Ex(IF,0),l), according as the value of

that token is true or false (10)+Alg. 4.3-1

(18) A the token on b in S *a2is on b in S2' (13)+(16)

(19) m Source(b,S 2 902) Src(Ex(IT,0),l) or Src(Ex(IF,O),1) according

as the value of that token is true or false (10)+Alg. 4.3-1

(20) noSource(b,S 2 '02) - Source(bS 1,,0) Defs. 7.1-2+3.4-1+3.3-5

(21) The token on b in S 1 is not on b in S, - Source (bS1 , 01) is

Src(Ex(d,k1I),i) where k 1 is the number of firings of d In 6 1 and

b is in the number-i group of output arcs of d Aig. 3.4-1

(22) A the token on b in S 2 02 is not on b in S 2 (13)+(16)

-352-

(23) - Source(bS 2 82) = Src(Ex(d,k 2),i), where k2 is the number of

firings of d in 82 Alg. 3.4-1

(24) m Source(b,S 21 2) - Source(b,S1 ,01) (6)+(l)

(25) Source(b,S 2, 2) - Source(b,S, 1) (3)+(5)+(6)+(17)+(20)+(21)+(24)

(26) Letting Source(b,S1,8l) be Src(Ex(c',n),i), c'(DL - the token on b

in Sl' is on b in S Def. 4.3-1+Alg. 3.4-1

(27) - if b is an output arc of actor c, then there are zero firings

of c in 01 (6)+(12)

A
Theorem 7.1-3 Let P be any LBS program. For any initial modified state

S for P, let S' be the corresponding initial standard state, and let 2

be any halted firing sequence starting in S. Then there is a balted -

firing sequence 2' starting in S' which has 2 as a prefix such that

T(S',2') is SOE-inclusive of T(S,).

Proof: (The essence of the proof has already been expressed; the details

may be found in Appendix E.) A

As outlined at the start of this section, there is only a small

difference between the technique for validating EE(LDM) as an S-S model

and that for EE(L BSS): the chain from any pair of computations a1 and a2

in a job to a pair of computations a), and &2 known to satisfy the last

five constraints has one more link. Consequently, the proof of the

Theorem below is so similar to that for Theorem 5.3-1 that it has been

removed to Appendix E.

Theorem 7.1-4 EE(LD,M) is a Structure-as-Storage model.

Q.E.D.

-353-

7.2 Verification That EE(,LDM) Satisfies the Determinacy Axioms

This section presents the proofs that any expansion (Int,J) from

EE(LD,M) satisfies the seven Determinacy Axioms presented in Section 6.2.

Section 7.2.1 covers the first four axioms; each succeeding subsection

treats one of the remaining axioms: in order of increasing difficulty,

freedom from conflict, commutativity, and persistence. It is assumed

throughout that P is the LD program of which (Int,J) is the expansion

and that Int - (St, /,IE).

7.2.1 The First Four Axioms

The demonstration that (Int,J) satisfies these Axioms is simple:

For any job JEJ, each computation in J is causal and J has the Prefix

Property by construction. All actions except the eight structure oper-

ations are deterministic because all actors in an LD program except

structure operators have functions associated with them. For any eEIE,

there is an arc b in P such that the values of the output entries of e in

any two computations in a job equal the values of the tokens on b in two

equal initial states of P; if either value is not a pointer, then they

are the same.

Lemma 7.2-1 Every expansion (IntJ) from EE(L DM) satisfies the first

four Determinacy Axioms.

Proof:

(1) There is an L program P of which (Int,J) is an expansion Def. 4.3-1
D

(2) Let a be any computation in any job JEJ. Then there is an initial

modified state S of P and a halted firing sequence 2 starting in

S such that a is a prefix of some EJ, 2 , and P itself is in J

-354-

(1)+Def. 4.3-3

(3) P is a causal permutation of r(S,2) (2)+Def. 4.3-5

(4) J is a job for Int, so P and a are computations for Int

Defs. 4.2-2+4.2-3

(5) Let yf be any prefix of a. Then yf is a prefix of P (2)

(6) Let e be the execution of which f is an output entry. Then e is

initiated in y with respect to Int (3)+(4)+(5)+Def. 4.2-7

(7) a is causal with respect to Int (5)+(6)+(4)+Def. 4.2-7

(8) All prefixes of P are in J (2)+Def. 4.3-3

(9) All prefIxes of a are prefixes of p (2)

(10) J has the Prefix Property (9)+(8)+Def. 4.2-7

(11) Let a1 and a2 be any two (not necessarily distinct) computations in

any two jobs J1 and J2 in J. Then there are two initial states

S1 and S2 for P and. two halted firing sequences 21 and 22

starting in S1 and S2 such that, for i=1,2, ai is a prefix of a

permutation pi of wi - n(Si,2i) Defs. 4.3-3+4.3-5

(12) Let Int = (St, I, IE). Let e1 f Ex(dl,kI) and e2 - Ex(d2,k2) be

any two executions not in IE such that 1(d1) = I(d2) = a is not a

structure operation and, for i=1,2, ei has output entries in ai.

Then ei is initiated in ai wrt Int; i.e., there are In(a) input

entries to ei in ai (7)+(4)+T)ef. 4.2-7

(13) Since ai has output entries in ai, it has output entries in wi, so

di is the label of an actor in P (12)+Alg. 4.3-1

(14) Since that actor is not a structure operator, the only transitions

at which tokens appear on its output arcs are those caused by

firing it (13)+Def. 3.3-9

-355-

(15) a is a function; i.e., the values of the tokens placed on di's

output arcs at any firing depend only on the values of the tokens

removed from di's input arcs at that firing

(12)+(13)+(l)+Defs. 3.3-12+2.2-3+2.1-2

(16) There are at most In(a) input entries to ei in Pi, so P,.and hence

w, have the same set of input entries to ei as does a,

(ll)+(4)+(12)+Def. 4.2-6

(17) For all J, there is an entry Ent(el,J) in a, iff there is an entry

Ent(e 2 ,j) in a2 , and if so, those entries' values are equal

for all J, there is an entry Ent(e1 ,j) in co iff there is an

entry Ent(e 2,J) in w2' and if so, their values are equal (16)

(18) -the k1th firing of dI in w, and the k2th firing of d2 in 2

remove tokens of the same values from the same set of input arcs

(13)+Alg. 4.3-1

(19) - those firings place tokens of the same value on the output arcs

of d1 and d2 (15)

(20) - for any i, the value of Src(el,i) in c , if any, equals the value

of Src(e 2,i) in w2, if any (14)+Lemma 4.3-1+Def. 4.2-6

(21) - for any i, the value of Src(el,i) in al, if any, equals the value

of Src(e2,1) in a2, if any (11)

(22) All actions except the structure operations are deterministic

(1l)+(12)+(17)+(21)+Def. 6.2-1

(23) Let a1 and a2 be any two computations in the same job JEJ. Then

there is an equivalence class E of initial modified states for P

such that J J E Def. 4.3-2

t t

-356-

(24) There are two equal initial modified states for P, ',1 and ,:2, and

two halted firing sequences S. and s2 starting in '1 and s2' such

that, for J-l,2, a i is a prefix of a permutation of uj - 11(Us j,.Qj)

(23)+I)efs. 4.3-3+4.3-5

(25) Let e be any execution in IE. For any i, the value of Src(ei) in

tj equals the value of Src(e,i) in (wj (24)+Def. 4.2-6

(26) e is either Ex(ID,O), Ex(IT,O), or Ex(IF,O) (25)+Def. 4.3-2

(27) e - Ex(IT,0) (e - Ex(IF,O)) , the value of Src(e,i) in t and "2 is

true (false) (24)+Alg. 4.3-1

(27) e - Ex(ID,O) -.- the value of Src(e,i) in w 1 u) 2) is the value of

the token on the number-i program input arc of P in "S1 (s2)

(24)+Alg. 4.3-1

(29) - the value of Src(el) in o is not a pointer iff the value of

Src(e,i) in w 2 is not a pointer, and if the values are not

pointers, they are equal (24)+Defs. 7.1-2+3.4-1

(30) The value of Src(ei) in a 1 is not a pointer iff the value of

Src(e,i) in a 2 is not a pointer, and if those values are not

pointers, they are equal (26)+(27)+(28)+(29)+(25)

(31) (Int,J) satisfies the first four Determinacy Axioms

(2)+(7)+(l0)+(22)+(23)+(30)+Axioms 6.2-1-6.2-4

7.2.2 Freedom From Conflict

This axiom concerns every two computations agf and a g in a Job in

which T(f) - T(f), T(g) - T(g), and g and f initiate distinct executions

a2 - Ex(d2,k2) and eI - Ex(dl,k1), respectively. It asserts that it is

not the case that in ngf, Ent(el,l) and Ent(e 2 ,1) are in the same access

-357-

history and e1 is in the reach R(e2). There are two equal initial modi-

fied states S and S' for P, and two halted firing sequences 2 starting in

S and 2' starting in S', such that agf is a prefix of some PEJ5 ,2 and afg

is a prefix of some P'EJS,'. Since 4(P) (4(P')) is the reduction of 2

(2'), (agf) (4,(afg)) is the reduction of a prefix of 2 (2') (Lemma 7.2-2

below). Since, for i-1,2, ki serves as an index of executions of di

(Corollary 4.3-1), ei is the kith execution of di to initiate in each of

agf and afg. Therefore, the prefix of 2 (2') whose reduction is 4(agf)

is in which, for i-l,2, (p, (wj) is the kith

firing of di; furthermore, e and e' have the same reduction 4(a), so they

are equal firing sequences.

Ent(el,l) and Ent(e 2,1) are in the same access history in agf iff

they have the same value iff (p and P2 have equal number-1 pointer inputs.

Given that, e1 is in R(e2) iff the actions /(d1) and I(d2) are one of a

certain few combinations, and, possibly, e1 and e2 have equal selector

inputs. This in turn is iff (p and P2 are firings of actors of that same

combination of actions, and, possibly, have the same selector inputs in

4291. Comparing the definitions of reach with Table 3.1-1, Ent(el,l) and

Ent(e 2,1) are in the same access history and elER(e2) iff (I and (2 poten-

tially interfere in o2 1 .

The Commutativity Axiom also concerns two computations agf and afg

in the same Job in which g and f may initiate distinct executions. The

above result, therefore, is pertinent to both axioms, and so is stated

separately below as Lemma 7.2-3; the essence of its proof has been con-

veyed well enough above that the details are deferred to Appendix E.

-358-

Lemma 7.2-2 Let S be any initial interpreter state and let 2 be any

halted firing sequence starting in S. Let a be any prefix of any

computation p in JS, ' and let 0 be the prefix of 2 whose length equals

the length of 1(a). Then the reduction of e is 4(a).

Proof:

(1) 4(p) is the reduction of 2 Def. 4.3-5

(2) A prefix of the reduction of 2 is the reduction of a prefix of 2

Def. 2.4-5

(3) 4(a) is a prefix of c(P) Def. 4.3-4

(4) 1(a) is the reduction of a prefix A of 2 (3)+(2)+(l)

(5) The length of A equals the length of the reduction ot A Def. 2.4-5

(6) (P(a) is the reduction of that prefix of 2 whose length is the same

as the length of 4(a), t.e.,.9 (4)+(5)

A
Lemma 7.2-3 For any equivalence class E of initial modified states for

an LS program P, let J be JE' Let Int(P) be (St, IIE). Assume there are

two computations agf and afg in J such that T(f) - T(f), T(g) - T(g), and

f and g initiate distinct executions e1 - Ex(dl,k1) and e2 - Ex(d2,k2) in

agf, where d1 and d2 are in St-DL. Let S and 2 (S' and 2') be the state

in E and halted firing sequence starting in that state such that agf (afj)

is a prefix of a computation in J S,2 Js,1* " Then there are prefixes

of 2 and'cq p of 2', whose reductions are 4)(agf) and 1(al), such

that 8' equals 0 and for i-1,2, (p (4i) is the kith firing of di-

Furthermore, (p, and (p potentially interfere in G 2 i iff Ent(el,l) and

Ent(e2,l) are in the same access history, and el is in R(e2), in agf. 22

- . , '

-359-

The proof that each expansion in EE(L DM) satisfies the freedom-

from-conflict axiom is by contradiction: By Lemma 7.2-3, if the axiom is

not satisfied, there are two equal initial states S and S' .and two firing

sequences %2 1 starting in S and 9'pjq starting in S' in which, for

i1,2, (p, ((j) is the kti firing of dI; furthermore, 5' equals S and (p

and V2 potentially interfere in %2 1 . By the Determinacy Condition, 1

and P2 are not in the same blocking group in &p2p1. It is argued at

length in Section 3.2 that any two potentially-interfering firings in

distinct blocking groups in any firing sequence starting in S are
th th

sequenced by S. I.e., the k firing of d must follow the k2 firing

of d2 in all firing sequences starting in any state equal to S. There-

fore, 0'(P! cannot be a firing sequence starting in S'; hence a contra-

diction.

This informal argument is presented rigorously in the following:

Theorem 7.2-1 Every expansion (Int,J) from EE(LDM) satisfies the

Freedom-from-conflict Axiom.

Proof: By contradiction.

(1) Let P be the L. program of which (Int,J) is an expansion. Assume

that the Axiom does not hold for (Int,J)

(2) There is a computation agf in a Job JEJ such that

(2a) f and g initiate distinct executions eI and'e 2 respectively in agf,

(2b) Ent(e1 ,1) and Ent(2,1) are in the same access history in agf,

(2c) e1 is in the reach R(e2) in agf, and

(2d) there is a computation afg in J with T(?) - T(f) and T(g) = T(g)

(1)+Axiom 6.2-7"L j .. __ _ _ _

-360-

(3) There is an equivalence class E of initial modified states for P

such that J - J Defs. 4.3-1+4.3-2

(4) There is an initial modified state S in E and a halted firing

sequence 2 starting in S such that agf is a prefix of some

in is (2)+(3)+Def. 4.3-3

(5) There is an initial modified state S' in E and halted firing

sequence 2' starting in S' such that a-g is a prefix of some

in JS',2' (2d)+(3)+Def. 4.3-3

(6) J is a Job for Int - Int(P) - (St, /,IE) (2)+Defs. 4.2-2+4.3-2

(7) agf and afg are both computations for Int(P) (2)+(6)+Def. 4.2-3

(8) For 1-1,2, let ei W Ex(di,ki). Then [(d1) and /(d2) are both

structure operations, and the latter is an Assign, Update, or

Delete (2c)+(7)+Defs. 5.1-6+5.1-8

(9) dI and d2 are both in St-DL (7)+(8)+Def. 4.3-2

(10) There are prefixes 0e2cPi of 2 and 9^' 2' of 2', whose reductions

are 4(agf) and 4(afg), such that 8' equals 8 and, for i-1,2, 91

(91) is the kith firing of di. Furthermore, 91 and 02 potentially

interfere in 8 i2f1 iff Ent(el,l) and Ent(e 2,1) are in the same

access history, and eI is in R(e2), in agf

(3)+(7)+(2)+(2d)+(2a)+(8)+(9)+(4)+(5)+Lema 7.2-3

(11) (1 and (2 potentially interfere in fp2V1 (10)+(2b)+(2c)

(12) P satisfies the Determinacy Condition (1)+Def. 3.3-12

(13) If (1 and P2 are in the same blocking group in 2, then in any firing

thsequence 2' starting in any state S' equal to S, the kI firing

of d follows the k2 firing of d2 (12)+(11)+(10)+Def. 3.3-11
122

th(14) There is an S' equal to S and an 2' starting in S' in which the k1

-361-
th

firing of dl precedes the k2 firing of d (5)+(4)+110)

(15) (I and (2 are in distinct blocking groups in 2 (13)+(14)

(16) The actor labelled d is a write-class operator(8)+Defs. 4.3-2+3.1-2
2

(17) P satisfies the Read-Only Condition (1)+Def. 3.3-12

(18) d2 is in the m.p.d.g. G(K) only if K - K(C,l) for some Copy operator

C (16)+(17)+Def. 3.3-2

(19) P is an program (1)+Def. 3.3-12

(20) P satisfies the Static/Dynamic Group Relationship (19)+Le-ma 3.3-1

(21) Exactly one of the following statements is true:

(21a) There is exactly one integer i such that P2ESB 2 (ID,i)

(21b) There is exactly one Select operator S, one integer n and one

integer i such that T2 ESB2 (S,n,i)

(21c) There is exactly one Copy operator C and one integer n such that

(P2 SB 2(C,n,2)

(21d) There is exactly one Copy operator C and one inte&er n such that

(P2 SB(C,n,2)

Furthermore, each of (21a), (21b), and (21c) - d(G(K) where K is

not K(C,1) for a Copy operator C (4)+(10)+(20)+Def. 3.3-13

(22) There is exactly one Copy operator C and one integer n such that

P2 (SB 2(C,n,l) 121)+(18)

th
(23) The n token to appear on C's number-1 output arcs has the same

value as the token removed from d2 Is primary input arc by 02

(22)+(20)+Def. 3.3-13

(24) For any Copy operator C, there is no token on C's output arcs in S

; Vefs. 3.3-5+2.2-6

i4

.5.. -

V

-362-

(25) A transition from empty to full condition for an output arc of C

occurs just at every firing of C Defs. 3.3-6+2.1-4+3.3-9

(26) The nth token to appear on an output arc of C is output by
the nth

firing of C (24)+(25)

(27) There is a pointer p such that the value of the token removed from

d2's primary input arc by cp2, as well as the tokens placed on C's

number-l group of output arcs at its nth firing, is (p,W)

(23)+(26)+Def. 3.3-9

(28) 1 has the same primary input as (2 (11)+Defs. 3.1-2+3.2-1

(29) l is not in SB (C,nl) or SB (Cn,2) (22)+(15)+Def. 3.3-10
2 S2

(30) There is a Copy operator C' and integer n' such that IlSB (C',n',I)

or PIESB 2 (C',n',2) - 4,' * C V n' * n (29)

(31) A the value of the token removed by qp from dl's primary input arc

equals the value of the n'th token to appear on the number-i

or number-2 output arcs of C' (20)+Def. 3.3-13

(32) = the n th firing of C' places tokens of value (p,R) or (pW) on the

output arcs of C' (28)+(27)+(26)+Def. 3.3-9

(33) - letting &C be the prefix of 2 in which pC is the later of the
ththC
n firing of C and the n' th firing of C', a Copy firing in 6

outputs the same pointer p as TC (27)

(34) - pEdom 11 in ShA (30)+(4)+Lemaa 5.2-1+Def. 2.3-1

-(35) -C could not output (p,R) or (p,W) Defs. 3.3-9+2.2-5

(36) For any Copy operator C' and integer n', cp1jSB (C',n',l),

T1ISB2 (C',n',2), and [C' # C v n' # n p is not output by the

n'th firing of C'] (30)+(32)+(35)

-363-

(37) 3i: (plESB (ID,i) there is a token of value (p,R) or (p,W) on a

program input arc in S (28)+(27)+(20)+Def. 3.3-13

(38) =,p~dom. n in S Defs. 3.3-5+2.2-6

(39) Since there is a prefix NC of 2 in which pC- (C,(p,n)) for some

n, and lXi < &pj, p~dom IT in S (4+(27)+Lenmna 5.2-l+Def. 2.3-1

(40) Ai: pl(SB 2(ID,i) (37)+(38)+(39)

(41) There is a Select operator S and integers j and i such that

9(1 SB 2(S~j ,i) (36)+(40)+(20)+Def. 3.3-13

(42) The j t tokens to appear on S's number-i output arcs in 2 have value

(pR) or (p,W) and that appearance does not follow the appearance

of the token removed byq)1 from dl's primary input arc

(41)+(28)+(27)+(20)+Def. 3.3-13

(43) d I is enabled in S'*e' and d 2 is enabled inS9

.(4)+(5)+(l0)+Def. 2.3-1

(44) There is a token on d I s primary input arc in S'eO'

(43)+Defs. 3.3-6+2.1-4

(45) S'-O' and S-0 are equal states (4)+(S)+(l0)+Thm. 7.1-2

(46) There is a token on d 1 s primary input arc b in S0e

(44)+(45)+Defa. 7.1-2+3.4-1

(47) b is ytan output arc of d 2 (43)+(46)+Defs. 3.3-6+2.1-4

(48) b is not a data-output arc of a Select operator which is In a pool

in S *e (46)4Cor. 7.1-1

(49) No token can appear on b in the transition from S*8 to Se02; ie.,

the token removed by tpl is on d1 'a primary input arc in SeG

(46)+(47)+(48)+Defs. 3.3-9+2.1-5

-364-

(50) There are prefixes of 9 such that there are tokens of value (pR)

on S's output arcs after those prefixes. Let be the

shortest of these; i.e., there are tokens of value (pR) on S's

output arcs in S*&PA but not in S'A (49)+(42)+Def. 3.3-9

(51) Let A be the actor of which (A is a firing. Then S is in Q(p) in

Fire(S'A,A) and there is no token with value (p,W) on an arc in

S" PA (50)+Def. 3.3-9

(52) There is a prefix Eps of pA in which 9S is a firing of S such that,

for S'E - (r,u), there are tokens of value p on S's output arcs

in Standard r((Strip(r,S) ,U) ,S) (51)+Defs. 3.3-5+3.3-9

(53) There is some node n such that f(p)(SM(n) in S'S (51)+Def. 2.2-5

(54) Let SS be the standard state corresponding to S. Then S is a

firing sequence starting in SS and S S.EgS. Thm. 7.1-1

(55) The heap in S'E is identical to that in S (54)+Def. 7.1-1

(56) There is some node n such that f(p) is in SM(n) in SS'. (55)+(53)

(57) pEdom n in SS*C, hence pEdom n in S*9 (55)+(56)+Thim. 2.2-1

(58) a does not contain the n
th firing of C - R does not contain the n

th

firing of C - pidom 17 in S'C- (52)+(27)+(4)+Lemma 5.2-1+Def. 2.3-1

(59) a does contain the nth firing of C (58)+(57)

(60) There is a prefix Xp of 2 with 1,6 I lXI < lel such that there is

no token with value (p,W) in S'X but there is one in S'Xp

(51)+(27)+(10)

(61) That token can appear only on an output arc of a Copy or pI

operator (not a Select), and then only if p is a firing of that

operator Defs. 3.3-9+2.2-5

-365-

(62) p is a pl firing there is a token of value (p,W) on an arc in S'x

Defs. 3.3-9+2.2-4+3.3-8

(63) (p is a Copy firing which outputs (p,W) but is not the nth firing of

C (61)+(62)+(60)+(59)

Since (1) leads to a contradiction between (63) and (36), (1) is false

(64) (IntJ) satisfies the Freedom-from-conflict Axiom A

7.2.3 Conmutativity

This axiom asserts that for any computation agf6 in a job JEJ such

that afg6 is also in J, ETj(afg6) - ETj(agf6). For any transfer t in

ETj(agf6), there is an entry h with T(h) - t such that agf6h is in J.

By construction of J, there is a y such that P - agf hy is in J for

some initial modified state S1 and halted firing sequence 21 starting in

S V There is also an initial modified state S2 equal to S, and halted

firing sequence 22 starting in S2 such that afg6 is a prefii of some P'

in is2,Q2. The thrust of the proof is to show that there is a halted
2'2

firing sequence 2' starting in S1 such that afgshy is in J S, ,; it then

follows that afgsh is in J, so T(h) - t is in ETj(afg6). By symmetry,

every transfer in ETj(afg6) is in ET (agf6), so ETj(afga) - ETj(agf6).

For afgshy to be in JS1,2,, it must be causal (Definition 4.3-5).

Both p' and P are known to be causal. For any prefix e-k of afg6hy in

which k is an output entry of execution e, if ek is a prefix of afg6, then

* is initiated in e by the causality of P'. Otherwise, there is an c such

that ek - afg8Lk. This implies that agf8Lk is a prefix of 0, so the

initiating entry of e is in agf8L. Therefore, e is also initiated in

afg6L- e, so afgghy is causal.

- S ON

-366-

The remainder of the proof is divided into two cases.

Case I: f and g do not initiate distinct executions of actors in P.

In this case, 2' - 9,. Since p is a permutation of 1I(S1,91), afg~hy

is a (causal) permutation of (S1 ,2'). If neither of f and g initiates an

execution in agf, then neither initiates an execution in afg, so

41(afg) - 4)(a) - P(agf). If one of f and g initiates an execution

e - Ex(d,k) in agf, then one of f and g initiates e in afg (if they are

both input entries to e, then the initiating entry in either computation

is the later one). Then 4(afg) = 4(agf) - 4(a)p, where (p is a firing of

d. It is known that 4(P) = t,(agf6hy) is the reduction of 21. The same

firings which follow 4p(agf) in 4(agf8hy) also follow 4(afg) in 4'(afg~hy),

and do so in the same order. Since 4(agf) - (afg), (afg~hy) = V(agf~hy),

which is 4(p), the reduction of g 9 2' (Lemma 7.2-4 below).

The final condition which must be met for afg6hy to be in JS1,19

concerns each of its prefixes ek. First the following observation is made

about ek and the prefix A of 2' whose reduction is V(e): If Ck is a

prefix of afg6, then & is a prefix of P', so letting A2 be the prefix of 22

whose reduction is -t(e), A2 equals A; hence S 2"A2 equals Sl"A. Otherwise,

as noted above, there is a prefix elk of p - agf~hy such that 4)(e') -4(e);

therefore, letting A1 be the prefix of 21 whose reduction is 4(el), A1

equals A, so S1.A1 equals S1 'A. I.e., afg6hy is a causal permutation of

n(S 1,2), *(afg6hy) is the reduction of 2', and for each prefix sk of

afg~hy, letting A be the prefix of 2' whose reduction is -(e), there is an

initial state S' equal to S and a halted firing sequence 2 starting in S',

and there is a prefix elk of some EJs,2 such that, letting A' be the

prefix of 2 whose reduction is V(), 6 ' equals S1 .A.

[r

-367-

Completing the proof in this case requires considering the destina-

tion Dst(Ex(d,m),J) in T(k). If dVDL, then because LEJSo 2 , d is enabled

in S'"A ', and if it is a merge gate, and its number-j input arc is its

T (F) input arc, then its control input arc holds a true (false) token in

S''A. Because S1.A equals S'*', d is enabled in SI-A with the same

input tokens (Corollary 7.1-2). If d(DL and d - (c,n), then there is a

token in S''A' on the arc b which is either the number-n program output

arc of P if c - "OD", or the number-n input arc of the actor labelled c;

furthermore, if c * "OD", there is no firing sequence starting in S''A'

which contains a firing of c. Since S . equals S'-A', there is a token

on b in S -A, and any firing sequence starting in S .A is a firing sequence

starting in S'"A' (Corollary 7.1-2), and so does not contain a firing of c.

These conclusions, together with the fact that afg~hy is a causal permu-

tation of rI(S 1 2') and 1(afg~hy) is the reduction of 2', mean that afg5hy

is in J

(Reasoning similar to that in the final paragraph above is used in

the proof that every expansion satisfies the Persistence Axiom. For

efficiency, the results needed in both proofs are combined into one lemma.

Unfortunately, a complete understanding of that lemma requires consider-

ations unique to persistence. To avoid a disruptive digression here, the

presentation of the lemma [Lemma 7.2-8] is postponed until after the proof

of Commutativity, in which it is used; this does not, however, introduce

any circularity.)

Case II: f and g initiate executions e1 - Ex(dl,k1) and e2 - Ex(d2,k2).

There are prefixes ft2(1 of 21 and e'qpq2 of 2 whose reductions are

O(agf) and 4)(afg) and 0' equals e. Furthermore, 1 and potentiallyA1 _ _ _ _ _

i --368-

interfere iff, in agf, Ent(e1 l) and Ent(e 2,1) are in the same access

history and e1ER(e2) (Lemma 7.2-3). By freedom-from-conflict, it is not

true that Ent(el,l) and Ent(e 2,1) are in the same access history- nd

e1ER(e2). Therefore, 1 and P2 do not potentially interfere in 9qp22 .

Since 1 and (p (02 and (2) are firings of the same actor, OpIP2 equals

u (2, which is a firing sequence starting in S2. S1 equals S2' so

%Pl2 is a firing sequence startig in S1 (Corollary 7.1-2). I.e., there

are two firing sequences &PL(P2 and 0 2 p starting in S1 such that I and

(2 do not potentially interfere in ft2TV
For S' fthe initial standard state corresponding to S1 ,

0
2p1 and

&p1c 2 are firing sequences starting in Sj, S1 Op2clPSfl and

s1e'. 1Cp2 se Ip2. Since 91 and 2 do not potentially interfere, an

earlier argument for standard states (Theorem 3.1-1) applies, holding

that (p and T do not interfere; i.e., S'.e9P1 and S 1 are identical

standard states. Modified states differ from standard states in two

regards: tagged pointers (p,R) and (p,W) take the places of simple point-

ers as the values of tokens, and there is a third, pool component in a

modified state. By the congruency relation t, the heap in S1-f2 1 is

identical to that in S-2 I,, which is identical to that in S '*1 w2e

which is identical to that in S*"9 P 2 . Similarly, each arc holds a non-

pointer-valued token in S lep2P1 iff it holds a token of the same value in

S'* 46rP2. Finally, if the pool components are identical, each arc holds a

token of value (pR) or (p,W) in S1*8 2Pl iff it holds a token of value

(p,R) or (p,W) in SI 'G1P2.

Lemma 7.2-5 below proves sufficient conditions under which, for any

arc holding tokens in two different states S.A and S'A2 whose values are

-369-

tagged pointers, either both are read pointers or both are write pointers.

The only arcs which can hold pointer-valued tokens are program input arcs

and output arcs of Copy, Select, or pI operators (including gates). In

all but the last case, the arc either always holds a read pointer or

always holds a write pointer. For a pI actor d, the kth firings of d in

A1 and A2 output tokens removed from the same arc b if [d is a gate -

those firings had identical control inputs]. If there is a k' such that

the last firing of the actor of which b is an output arc is the k'th in

both A1 and A2, then a simple inductive argument shows that the kth

firings in A1 and A2 of any pl actor either both output read pointers or

both output write pointers. Then if every actor fires the same number of

times in A1 and A2, the values of the tokens on any arc in S' 1 and S' 2

are either both read pointers or both write pointers.

From the preceding two paragraphs, the configuration and heap compon-

ents in SI'02 l and SI'0eu1jj 2 are identical if the pool components are.

A careful accounting shows that for each pointer p, the number of tokens

with value (p,W) is the same in both states. For each label S which is in

Q(p) in Sl'0, then, S will have been removed in SI'*4 2Pl iff there are

zero tokens of value (p,W) in Sf'p 2(p1 and Sl'eplp 2 :iff S has been

removed from Q(p) in Si 8(1 (Pi2. If either (p or 2 is a firing of S, it

has the same inputs in both 8 2(i and (PlcP2 and fires in the same heap,

and so will try to output the same pointer. Thus, S will get added to the

same pool in either firing sequence, and will have been removed from that

pool in S '8cp2cPI if f it has been removed in Sl'
8 Pl2 . Therefore, the

pool components of SI'8f2 o and Sl'Ocpcl9 2 are identical, so the states

themselves are identical (Theorem 7.2-2 below).

-370-

The halted firing sequence SI has 0P2P1 as a prefix, and so may be

written as E'2 1E . Since Sl'f2 Dl and SlP2 are identical, it is

evident that for any prefixes & 1 of 21 and A' of ftl 2F such that

I " i('I '1 I ' Sl *eAS1 1 and J"A' are identical; furthermore,

2' = 0-IP2F is also a halted firing sequence starting in SI.V (agf) is

the reduction of O 2(P, ' (afg) is the reduction of (PlP2, and 4(agf6hy) is

4(3), the reduction of 2I =
,2Ip; hence, 4(afgbhy) is the reduction of

8cPl 2E - 2' (Lemma 7.2-4). Because both d1 and d2 are enabled in

S.8,eno output arc of one is an input arc of the other, so any token

removed from an arc b by (p, or 02 in either 8 2(1 or 8 i(2 is on b in

S1 8. Thus pI removes the same tokens from the same arcs in 8 2ti and

'Pl 2; (2 does also. Since every other firing fires in Identical states,

for any d and k, the kth firings of d in 21 and 2' both remove the same

tokens from the same arcs. Fuithermore, for any such arc which is an

output arc of an actor d', the k firings of d in 21 and 2' are preceded

by the same number of firings of d'. Finally, each arc has a token left

in the final state SI'21 iff it has an identical token in Sf''. By

Algorithm 3.4-1, then, r)(Sl,Q') has the same set of entries as TI($12 1

(Lemma 7.2-6 below).

Thus far. it has been seen that afg6hy is a permutation of agf6hy,

which is a permutation of r(5I,.Q), which is a permutation of 7(SI.2'),

and that t(xfgAhy) is the reduction of 2'. The following is sufficient

.'. prove that zftghy is in T(.'7S2'): For each prefix ck of afg~hy,

"..0 h, the pr.f(i of -' who@e reduction is t(r), there is an initial

.,d a halted firing sequence 2 starting in 5', and

.. 94W 'W.it4tl.,f in I.. such that. letting A'
* =

-371-

be the prefix of 2 whose reduction is (&'), S'"A' equals S1" A

(Lemma 7.2-8). If ek is a prefix of afg6, then, as in Case I, e is a

prefix of P', so S' f S2 and 2 - 2"2 Otherwise, there is an L such that

& = afgc. Since -(afg) is the reduction of 0p1p2, there is a X such that

A = EP1p 2X. Since 4(agf) is the reduction of ft2pl1, there is a prefix

C'k = agfEk of agf6hyEJS 1 such that, for A' the prefix of 21 whose

reduction is 4(e'), A' = 8&2(P1X (Lemma 7.2-4). IA'I = IAI ? 10pl 2 1, so

S1 A' and S1A are identical, hence equal. Therefore, afg6hy is in J 1 .

The various lemmas and theorems for which informal proofs have just

been given are now presented in their precise forms.

Lemma 7.2-4 Let a,,a 2, and P be any three sequences of entries such that

a2 is a permutation of a1. Let Int = (St, I,IE) be an interpretation. Let

01 and 02 be such that, for i=1,2, the firing sequence 4 (ai) reconstructed

from ai with respect to Int is the reduction of 08. Then for any A,

(a1) is the reduction of 01A = 4(a2p) is the reduction of 02A.

Proof: By induction on the length of P. All initiations and reconstruc-

tions are with respect to Int.

Basis: IPI - 0.

(1) Since alp = a1, for any A, 4)(al) is the reduction of 01A =- (al) is

the reduction of 01A = the reduction of 01 equals the reduction of

o1 0 - = 0 Def. 2.4-5

(2) 4)(a2p) 4)(a2) is the reduction of 02A = 02

Induction step: Assume the Lemma is true for any of length n 0 0, and

consider y = yf of length n+l.

S r

-372-

(3) Let e = Ex(d,k) be the target of f. f is not the initiating entry

of e in alp iff there are fewer than In(/(d)) input entries to e

in alp iff there are fewer than In(I(d)) input entries to e in

a2P iff f is not the initiating entry of e in a2p Def. 4.2-6

(4) f is not the initiating entry of e in alp - C(alp) - (aly) A

l(a2p) = 4)(a2Y) (3)+Def. 4.3-4

(5) - [for any A, 4 (a1p) is the reduction of 61e -(aly) is the

reduction of 61A - (P(a2y) is the reduction of e2A ind. hyp.

(6) - C(a2p) is the reduction of e2A] (4)

(7) f is the initiating entry of e in alp = 4(al) - t(aly)p ' and

4)(a2P) = 4)(a2y)', where p' is a firing of d (3)+Def. 4.3-4

(8) - [for any A, 4(alp) is the reduction of GlA - 91 -= Elp, wherep

is a firing of d Def. 2.4-5

(9) - the reduction of 0l is that prefix of the reduction of 061 which

is one firing shorter than the reduction of elI Def. 2.4-5

(10) - the reduction of 6elF is (aiy) (8)+(7)

(11) - 4(a2) is the reduction of 02E ind. hyp.

(12) the reduction of 62A is 4(a2y)P', where (p' is a firing of d

Def. 2.4-5

(13) the reduction of 02A is (a2p)] (8)+(7)

(14) For any 6, cp(alp) is the reduction of 1A 4)(2p) is the reduction

of 02A (4)+(5)+(6)+(7)+(8)+(13)A I
Lemma 7.2-5 Let S1 and S2 be any two equal initial modified states for

the same program P. Let 21 and 2 be two firing sequences starting in S1

and S2 respectively such that

l - . _--- ,, = .m- . i ro

-373-

(1) for each actor d in P, there are the same number of firings of d

in both 2 and 2
1 2.

(2) for each gate d in P and each k, the kth firings of d in 21 and 22

remove control tokens of the same value, and

(3) for any two actors d and d', and for any k, there is a k' such that

if the kth firings of d in 21 and 22 remove tokens from output arcs

of d', then those firings both are preceded by k' firings of d'.

Then for any arc in P which holds tokens of pointer value in SI' 1 and

$ 22 2 either both are read pointers or both are write pointers.

Proof: (The straight-forward inductive proof has already been outlined

above; the rigorous treatment has been removed to Appendix E.)
A

Theorem 7.2-2 Given any LD program P, let O 2"l be any firing sequence

starting in any initial modified state S of P, such that O1(2 is also a

firing sequence starting in S. If c1 and (2 do not potentially interfere

in 42(l' then S'p 2 1 and S. P1p2 are identical states.

Proof:

(1) 0 is a firing sequence starting in S Def. 2.3-1

(2) Let S' be the initial standard state corresponding to S. Then e,

2 (1 , and 0qt1q2 are all firing sequences starting
in S',

So 0*• , S'.Op 2cPlPS • 2q 1 , andS ' • OPlp2PS * OTP 2 (l)+Thm. 7.1-1

(3) (p and 02 do not interfere in t 2p,1 Thin. 3.1-1

(4) S'1 2(p1 and S'.-&ft 2 are identical states (3)+Def. 3.1-1

(5) Let d1 and d2 be the actors of which (1 and 2 are firings. Then

both actors are enabled in S'8 Def. 2.3-1

-374-

(6) If either is a gate, its control input arc has a token in S'e and

so is not an output arc of the other (5)+Defs. 3.3-6+2.1-4

(7) If d1 (d2) is a gate, the control token input by p1 (2) in either

(P2 1 or p1(P2 is the token on the control input arc in Se

(6)+Defs. 3.3-9+3.3-7+2.1-5

(8) The sets of input arcs from which 1 (w2) removes tokens is the

same in both &P2l and Pl '2 (7)+Defs. 3.3-9+2.1-5

(9) All of those arcs have tokens in S" (5)+(7)+Defs. 3.3-6+2.1-4

(10) None of those arcs is an output arc of either dI or d2

(5)+(9)+Defs. 3.3-6+2.1-4

(11) All of the tokens removed by 91 ((2) in either ft291 or tplT 2 are

on the arcs from which they are removed in Se (10)+Def. 2.1-5

(12) For any pointer p and any arc b, there is a token with value (p,W)

on b in S6" but no such token in S.G@2 I iff there is a token with

value (p,W) on b in S-" but no such token in $'e(i 2 (8)+(11)

(13) For each arc b, b holds a token of value (p,W) in S'e * b is not

an output arc of either d or d2 (5)+Vefs. 3.3-6+2.1-4

(14) m if b holds a token in either S*f2(I or S ' f 1cP2, its value is

(p,W) Defs. 3.3-9+2.1-5

(15) Tokens with write pointers as values can be placed on the output

arcs only of Copy or pI operators Defs. 3.3-9+3.3-7+2.2-5

(16) Neither O1 nor (P2 is a Copy firing which outputs p - for each arc

b, there is a token with value (p,W) on b in S'g 1(2 but no such

token in S8e iff b is an output arc of d1 or d2, that actor is a

p1 operator, and if it is a gate, the control input to 91 or T2

in ftl2 is such that tokens are placed on all output arcs and

-375-

their values equal the value of the token removed from an input

arc a by (ior p2in e(p I J,2, which token has value (p,W)

(15)+Defs. 3.3-9+2.1-5+2.2-4

(17) if f b is an output arc of dIor d 2 P that actor is a pI operator,

and if it is a gate, the control input to (or (2in 401is

such that tokens are placed on all output arcs and their values

equal the value of the token removed from input arc a by (pIor

Tin Gp2l which token has value (p,W) (7)+(l)

(18) if f there is a token with value (p,W) on b in S*0&P2 p, but no such

token on b in SeG (15)+Defs. 3.3-9+2.1-5+2.2-4

(19) The number of tokens with value (p,W) in S' G(P2Cp (or S. eOp1 2) is

the number of tokens with value (p,W) in S*e, minus the number of

arcs which hold tokens of value (p,W) in S-0 but not in S 2P

(or S t1 P2), plus the number of arcs which hold no tokens in S*G

but a token of value (p,W) in S-(o (or S - ftl(p2) (13)+(14)

(20) If neither (,or T2 is a Copy firing which outputs p, then the

number of tokens with value (p,W) in S* f2 ol equals the number of

tokens with value (p,W) in S* 4p1(2 (19)+(12)+(16)+(l8)

(21) For any arc b, b holds a token of value (p,W) in Suc 1 (0 1 2

but not 'a S*4 2 (S'&(Pl) = P (02) is a Copy firing which outputs

p, or (p ((2 is a pI firing and some input arc of dl (d 2) holds

a token of value (p,W) in S~eP2 (S. ftl) (15)+Def. 2.2-4

(22) For any Select operator S not equal to d 1 or d 2 ' and any pointer

p, S(Q(p) in S* 9 there are tokens of value p on S's output

arcs in S'9 (2)+Def. 7.1-1

(23)- p~dom n in S'*O Thin. 2.2-1

-376-

(24). pdom inS*6(2)+Def. 7.1-1

(25) .neither pnor is a Copy firing which outputs p Lemma 5.2-1

(26) =*if there are zero tokens with value (p,W) in S ' OP2 (S (w),

then there are zero tokens with value (p,W) in S'O(P2 (Pl (S'ftl(2)

(21)

(27) SEQ(p) in Se(= sjQ(p) in S * f 2q01 (S * (kP(2) iff there are zero

tokens with value (p,W) in either Sf2or S * 60001 (Seq1ft or

S ' kl(2 Def. 3.3-9g

(28) if f there are zero tokens with value (p,W) in SG&P2 P(S* ft(2

(22)+(26)

(29) For any Select operator S not equal co d 1or d2'adnypitrp

SEQ(p) in either S *EkP(Plw or S*e41(2 SEQ(p) in S*O Def. 3.3-9

(30) ,SEQ(p) in i~t(f f SEQ(p) in S -(&Pl(P 2 (27)+(28)+(22)+(25)+(20)

(31) Assume, say, d 1is a Select operator. Let A be any firing sequence

starting in S such that d1is enabled in SA; i.e., &p, where (p

is a firing of di, is a firing sequence starting in S Def. 2.3-1

(32) A and &p are firing sequences starting in S', S'*,&pA and

5'. , PP5' &~P (31)+Thm. 7.1-1

(33) LetS-Abe (r,U). Then U is the heap in S'*A (32)+Def. 7.1-1

(34) Let q and s be the values of the tokens on d1 's nuumber-1 and number-

2 input arcs in Strip(r,d 1). Then those arcs have tokens of value

(qR) or (q,W) and s in S*A (33)+Def. 3.3-8

(35) Those arcs have tokens of value q and a in S'-A (34)+(32)+Def. 7.1-1

(36) There are tokens of value p on d I ' output arcs in

Standard r((Strip(r,d 1),U),d 1 iff there is a pair (sjI(p)) in

SMOI(q)) in U (34)+Defs. 3.*3-7+2.*2-5

Walk. '

-377-

(37) if f there are tokenis of value p on d Is output arcs in S'-~ &p

(35)+(33)+Def. 2.2-5

(38) Letting SIObe mrum.) for any p, d EQ(p) in Fire(S*9,d) 1ff

Ithere are tokens of value p on d I's output arcs in

Standard r ((Strip(r,di1),UJ),d 1) (31)+Def. 3.3-9

(39) 1ff there are tokens of value p on d Is output arcs in S'01

(31)+(33)+(36)+(37)

(40) if f there are tokens of value p on those arcs inSe'lW2 (8)+(10)

(41) if f there are tokens of value p on d 1 s output arcs in S'*Ofp2 (p1 (4)

(42) 1ff, letting Se9p 2 be (,,u',Q'), there are tokens of value p on

d1'Is output arcs in Standard r((Strip~ld1)U)d1

(31)+(33)+(36)+(37)

(43) Iff d1 EQ(p) in Fire(S .() 2,dj) (31)+Def. 3.3-9

(44) There are tokens an d 1's output arcs of value p in S'8p1 =

p~dom n in that state Thin. 2.2-1

(45 -(2is not a Copy firing which outputs p, nor is cpl(31)+Lemmia 5.2-1

(46) For any p, dl(Q(p) in S PO 2 1ff d 1EQ(p) in Fire(S-(,dl) and

there are not zero tokens of value (p,W) in s6Cp1 and there are

not zero tokens of value (p,W) in S*cp fP2 Def. 3.3-9

(47) 1ff d 1EQ(p) in Fire(S*O,d 1) and there are not zero tokens of value

(p ,W) in S 'Gl'e2 (38)+(39)+(44)+(45)+(25)+(26)

(48) 1f f d EQ(p) ih Fire(S-cp2 d,) and there are not zero tokens of value

(pW) in SeGPP 1 (38)+(43)+(39)4-(44)+(45)+(20)+(25)+(26)

(49) 1ff d 1EQ(p) in S-k 2 (PI Def. 3.3-9

By symmetry,

(50) d 2 is a Select - p, d2 EQ(p) in 58p92p1 1ff d 2 EQ(P) in S*Ocp1 42
'4

-378-

(51) For any Select operator S and any pointer p, SEQ(p) in S'G 2(P1 iff

SEQ(p) in S'plc 2 (20)+(30)+(46)+(49)+(50)

(52) For any arc b in P, b is empty in s 21 iff b is empty in

s"el291 or b is an output arc of a Select operator S and there

is a pointer p such that SEQ(p) in S*G, 2 p (2)+Def. 7.1-1

(53) iff b is empty in S'8p1 2 or (4)

(54) b is an output arc of a Select operator S and there is a pointer p

such that S(Q(p) in Seclt 2 (51)

(55) iff b is empty In Se l&Y2 (2)+Def. 7.1-1

(56) b holds a token of non-pointer value v in S-e l iff b holds a

token of value v in S'*p 2 l iff b holds a token of value v in

S'*.IcP2 iff b holds a token of value v in S-e P 2 (4)+(2)+Def. 7.1-1

(57) b holds a token of value (p,R) or (p,W) for pointer p in S*8 2p1

iff b holds a token of value p in S'.8 2 1 iff b holds a token of

value p in S'.ew1 P2 iff b holds a token of value (p,R) or (p.,W) in

S".91(02 (4)+(2)+Def. 7.1-1

(58) For each actor d, there are the same number of firings of d in

e0q and 4,9 2, and if d is a gate, the kt h firings of d in

%t and %(P 2 remove the same control token (7)

(59) For any actors d and d', the kth firings of d in eqp291 and l 2

are preceded by different numbers of firings of d' -d and d' are

d and d and the kth firing of d is either i or p2 " that

firing does not remove a token from an output arc of d' (8)+(10)

(60) For any arc b which holds pointer-valued tokens in S"9 2 p1 and

S. 9 1P2, either both are read pointers or both are write pointers

(58)+(59)+Lea 7.2-5

-379-

(61) The heaps in S'&2PI and S'e 1f2 are identical (31)+(33)+(4)

(62) '8P2q1 and SOPI 2 are identical (51)+(52)+(55)+(56)+(57)+(60)+(61)

A
Lemma 7.2-6 Given any LD program P, let 2 be any halted firing sequence

starting in any initial modified state S for P. Let 062p1 be any prefix

of 2 and let 9 be such that Q - O 2 1.O. If O(P1(2 is a firing sequence

starting in S and S-&P is identical to S- P2 1 , then 2' - etlp2s is a

halted firing seqeuence starting in S and rI(S,2') contains the same set

of entries as TOM.

Proof: (The lengthy proof of this intuitive result is in Appendix E.)
A

Theorem 7.2-3 Every expansion (Int,J) from EE(LDM) satisfies the

Commutativity Axiom.

Proof: (All initiations and reconstructions are with respect to Int.)

(1) Let agf6 be any computation in any job JEJ such that afgb is also

in J.

(2) (Int,J) is the expansion of some LD program P, Int - Int(P), and

there is an equivalence class E of initial modified states for P

such that J - J (1)+Defs. 4.3-1+4.3-3

(3) Let t be any transfer in ET3 (agf8). Then there is an entry h

with T(h) - t such that agf6h is in J Def. 6.2-2

(4) There is an initial modified state S1EE for P and a halted firing

sequence 21 starting in S1 such that agf6h is a prefix of some

in is (2)+(3)+Def. 4.3-3

(5) There is an initial modified state S2EE for P and a halted firing

sequence 22 starting in S2 such that afg6 is a prefix of some p'

2 -380 (1)+(2)+Def.4.-

(6) p is a causal permutation of n~(S,,2 1). Write it as a gf8hy

(7) P' is also causal (5)+Def.4.-

(8) Let e~k be any prefix of afg8hy. Let e be the execution of which k

is an output entry. kEczfg8 - k is a prefix of afg6 ek is a

prefix of P' (5)

(9) - e is initiated in e (7)+Def. 4.2-7

(10) kEhy -3L: e~k -afgftk -agfuk is a prefix of (6)

(11) -the initiating entry of e is in agf6c (8)+(6)+Def. 4.2-7

(12) -e is initiated in afg6L - Def. 4.2-6

(13) e is initiated in e (8)+(,9)+(10)+(12)

(14) cfgbhy is causal (8)+(13)+Def. 4.2-7

(15) S 2 and S1are equal states (4)+(5)+(2)

There are now two cases to consider: f and g either are or are not the

initiating entries of two distinct executions in czgf 6.

Case I: f and g are not the initiating entries in agf 6 of two distinct

executions of actors in P.

(16) afg~hy is a causal permutation of P, hence of nI(S 1 ,21) (6)+(14)

(17) f and g are input entries of the same execution Ex(d,k) -*f is the

initiating entry in agf if f g is the initiating entry in afg and

d is in St-DL Defs. 4.2-6+4.3-2+4.3-1

(18) V 'ag) - *(a) - 4(af) -[f is the initiating entry in agf -II

*t(agf) - 4P(a)(p, where 0 is a firing of d, and 4)(aft) - t(a)O1 A

[f is not the initiating entry in agf - ~agf) -4)(a) - $afg)1

-381-

=4(agf) - 4a(fg) Defs. 4.3-4+4.2-6

(19) f and g are input entries to distinct executions Ex(dlk I and

Ex(d 2,k 2) respectively =*f is an initiating entry and d ESt-DL

g is not an initiating entry or d 2 VSt-DL =*4(agf)- %agP,

where cpl is a f iring of dl, and 41,(cg) - 4)(a) A

41(cafg) = 4i(af) -41(ci)TI A [g is an initiating entry and d 2 EStDL

-f is not an initiating entry or d14St-DL -4,(azgf) 4(a(P

where (p2is a firing of d 2 and 4'(cxfg) =4<(af)(P2 - (a)(P2I

cI(agf) - ((afg) Def. 4.3-4

(20) A [f is not an initiating entry or dVeSt-DL A g is not an initiating

entry or d2 fSt-DL - cP(agf) - '(a) - 4'(afg)IJ Def. 4.3-4

(21) -t(agf) - 4 (afg) (17)+(18)+(19)+(20)

(22) 4(agf6hy) =4)(P) is the reduction of 21(6)+(4)+Def. 4.3-5

(23) Let 6 be any firing sequence whose reduction is 4 (agf) - 4(afg).

For any prefix c. of 6hy, let A be such that (agft,) (4'(afgu,)) is

the reduction of HA. Then 4)(afgt,) (4'(agfEL)) is also the reduction

Of M~ (21)+Leuma 7.2-4

(24) 4>(afgbhy) is the reduction of 21(22)+(23)+Def. 2.4-5

(25) Let £'k be any prefix of afg~hy. Let A be the prefix of 21whose

reduction is 4-(e'). k~afg5 - Ok is a prefix of cafgb =* &'k is a

prefix of P' -letting A 2 be the prefix of 2 2 whose reduction is

4(),A is a firing sequence statting in S1 which is equal to a 2

(5)+Lemma 7.2-2+Defs. 2.3-1+2.4-5

(26) - S2'62 equals S, A (15)+Thm. 7.1-2

(27) kjafg6 -3L: &'k *afg~k - 4(afg)l :5 I4(6 can be written as

0% where the reduction of 6 is 4(afg) Defs. 4.3-4+2.4-5

-382-
(28) - 4(agfc) is the reduction of OX = A (23)

(29) -there is a prefix ek of agf6hy such that, for Al the prefix of 2i

whose reduction is '(e) -=I(agfc), A is ideatical, hence equal,

to A I (25)+Def. 2.4-5

(30) S1 A1 equals S (15)+Thm. 7.1,2

(31) afg~hy is in J.,1 (4)+(5)+(16)+(24)+(25)+(26)+(27)+(30)+Lemma 7.2-8

(32) cfgh is in JE = J (31)+(4)+(5)+Def. 4.3-3

(33) T(h) is in ET (afg8) (32)+Def. 6.2-2

Case II: f and g are the initiating entries of two distinct executions

e = Ex(d,,kI) and e2 ' Ex(d2,k2), where dI and d2 are both labels of

actors in P.

(34) agf and cfg are both in J (4)+(5)+(2)+Def. 4.3-3

(35) There are prefixes 8 2 1 of 2 and G'P(j2 of 2 whose reductions

are 4(agf) and (c(afg), such that 0' equals 8 and, for i1,2,9i

(gj) is the kith firing of d Furthermore, gI and 92 potentially

interfere in O2gg iff Ent(el,l) and Ent(e2,1) are in the same

access history and e1ER(e 2) in cgf (2)+(34)+(4)+(5)+Lemua 7.2-3

(36) Ent(el,l) and Ent(e 2,1) are in the same access history and elER(e2)

in agf - (Int,J) does not satisfy the Freedom-from-conflict Axiom

(1)+(34)+Axiom 6.2-7

(37) g, and (2 do not potentially interfere in 0w2 91 (35)+(36)+Thm. 7.2-1
(38) &p1p2 equals O'g' 1 (35)+Def. 2.4-5

(39) Let (4 be 1(S1,OcP2cP1), and let NAR be the node activation record

derived from 8p2 1 and w. For any pointer-node pair (p,n), (p,n)

is in a Copy firing in e8 2gp iff there is a Copy label C and an

integer k such that there are at least k firings of C in O2gi

-383-

and the kth is (C,(pn)) iff Ex(C,k) is
initiated in w and the kth

firing of C in 21 is (C,(pn)) Lemma 4.3-1+Defs. 4.3-1+4.2-6

(43) iff (p,n) is in ran NAR Def. 5.2-4

(41) The multiset of pointer-node pairs in the Copy firings in 21 is

ran NAR, which is consistent with the heap in S I

(39)+(40)+Lemma 5.2-2

(42) PI2 is a firing sequence starting in S 1

(35)+(15)+(38)+(41)+Cor. 7.1-2

(43) SI'@e(Y 2 and SI.e 24 I are identical states (35)+(42)+(37)+Thm. 7.2-2

(44) Let E be such that 2I 2 and let 2' be Opezlp. Then 21 is a

halted firing sequence starting in Sad ri(SI,2l) consists of

the same set of entries as r(S 1,2I) (4)+(35)+(42)+(43)+Lemma 7.2-6

(45) afg6hy is a permutation of rI(SJ2 1) (6)

(46) afg6hy is a permutation of (Sl,2 1) (45)+(44)

(47) 4(agf6h) is the reduction of 2
= ()'P 2(p (22)+(44)

(48) 4)(afg) is the reduction of 4(P12 (35)+Def. 2.4-5

(49) 4)(afghty) is the reduction of 0e(p 2z 1i

(35)+(48)+(47)+(44)+Lemma 7.2-4

(50) Let e'k be any prefix of afg5hy. Let A be the prefix of 21 whose

reduction is 4(e'). kEafg6 - e'k is a prefix of afg5 - letting A2

be the prefix of 22 whose reduction is A('), A is a firing sequence

starting in S1 which is equal to A2 (44)+Defs. 2.3-1+2.4-5

(51) - S2 "A2 equals S I'A
(15)+Thm. 7.1-2

1(.52) S1*
6

1(P2 equals $1 "ep2p 1 (43)+Defs. 7.1-2+3.4-1

(53) kfafg6 - 3L: &'k - afg~k - j4(afg)l : - (5')I A, whose reduction

is 4)(afgr.), can be written as A - O 1P2 (45)+(48)+(50)+Def. A-

DATA-STRUCTURING OPERATIONS IN CONCURRENT COMPUTATIONS4(U)
OCT 79 D L ISAMAN

UNCLASSIFIED MIT/LCS/TR-229 ML

5 6flfflfflfflfflfflf

11~ ~ 1111 L g2.1B25

ICHIA RI I ION 111,1 LILALO

-384-

(54) - (czgf) is the reduction of 4,9~X (35)+(48)+Leina 7.2-4

(55) - there is a prefix ek - agfk of agf6hy such that, for a1the

prefix of 21whose reduction is 4(a) - (agfL), S 1*1 M Sf 8cp2epX

equals S - Sf *Ocpjcp (50)+(44)+(52)+Leina 7.2-2+Tho. 7.1-2

(56) afg8hy is in J 2

(4)+(5)+(44)+(14)+(46)+(49)+(5O)+(51)+(53)+(55)+Lesma 7.2-8

(57) afg8h is in JE M (56)+(4)+(5)+Def. 4.3-3

(58) T(h) is in ETJ(afg8) (57)+Def. 6.2-2

In either case then,

(59) For any transfer t, tEET i(agf6) - tEET i(afg6) (3)+(35)+(58)

By symmetry,

(60) For any transfer t, t(ET3(afg8) -tEETj(agf8);

i.e., ETJ(afg6) - ETj(agfb)

7.2.4 Persistence

The Persistence Axiom asserts that for any Job J and any computation

ag in J, for any transfer t * T(g), tENT (a) - tfET (czg). In other words,

once a transfer becomes eligible, it remains so until the appearance of an

entry having that transfer. The analogous property of the schema model of

data flow - that once enabled, an actor remains enabled (with the same

tokens on its input arcs) until it fires - is easily demonstrated:

Theorem 7.2-4 Let S be any initial modified state for any program P. Let

&p be any firing sequence starting in S, and let d be the actor of which

* the last firing cp is a firing. Then for any actor d' 0 d, each input arcJ

-385-

of d' which holds a token in S'e holds the same token in S'eq , and d' is

enabled in S"0 =* d' is enabled in S'p.

Proof:

(1) If d is a Select, its output arcs are all empty in S'O

Defs. 3.3-6+2.1-4

(2) Any arc which has a token in S'6 but no token in S-f is an input

arc of d (1)+Defs. 3.3-9+2.1-5

(3) Let d' be any actor except d. No input arc of d is an input arc of

d' and no output arc of d is an output arc of d' Def. 2.1-1

(4) Any arc which holds a token in S'8q which it does not hold in-S-e

is either an output arc of d or a data-output arc of a Select

operator S for which there is a p such that SEQ(p) in S'0

Defs. 3.3-9+2.1-5

(5) No arc holding a token in S'8 is an output arc of d Defs. 3.3-6+2.1-4

(6) No arc which has a token in S'9 is a data-output arc of a Select

operator S for which there is a p such that SEQ(p) in S'e Cor. 7.1-1

(7) Each input arc of d' which holds a token in S'e holds the same

token in S'0 (2)+(3)+(4)+(5)+(6)

(8) d' is enabled in S'O = there is no pointer p such that d'EQ(p) in

S'0 (3)+Def. 3.3-6

(9) - since P is not a firing of d', there is no pointer p such that

d'EQ(p) in Soft Def. 3.3-9

(10) - [d' is not enabled in S'0V - either there is an input arc of d'

which holds a token in S'O but holds either no token or a

different control token in S*8, or there is an output arc of d'

which has no token in S'e but has one in S'0]p Def. 3.3-6

-386-

(11) A no output arc of d' Is an output arc of a Select operator S for

which there is a p such that SEQ(p) in S-0 (8)+Def. 2.1-1

(12) - d' is enabled in S-ft (2)+(3)+(4)+(5)+(6)A
Proving persistence in the entry-execution model is considerably

more difficult: Any computation ag in a job J is a prefix of some AU s S

where S is an initial modified state and 2 is a halted firing sequence

starting in S. For any t(ET3 (a), there is a computation ahEJ with

T(h) - t, so there is an initial modified state S' equal to S, and a

halted firing sequence 2' starting in S', such that ah is a prefix of some

'EJ s , j. The goal is to construct a halted firing sequence X starting

in S such that there is a computation agI6 in JSX1 where T(i) - t.

Every entry in ag must be in TI(S,2). The non-dumy targets of those

entries can be partitioned into two sets of executions: AF - {Ex(d,k)l

d*DL and Ex(dk) is initiated in a} and EF - {Ex(dk)j djDL and Ex(d,k)

has an input entry in ag but is not initiated in a). For any e - Ex(d,k),

eEAF iff there are k firings of d in the prefix 0 of 2 whose reduction is

§(a) (Theorem 4.3-2) iff all input entries to e in a are in ri(S,0) iff

for any X having 0 as a prefix, all input entries to e in a are in T(S,X).

It is much harder to accomodate an input entry f to an execution Ex(d,k) in

EF: X must be constructed so that there is a kth firing of d in X (which

there is not in 8) and that firing removes the same tokens from the same

set of input arcs as the kth firing of d in 2. Similarly, the target

Ex(d',k') of h is not initiated in a, so there are not k' firings of d' in

0; nonetheless, there must also be a k 'th firing of d' in X which removes

the same tokens from the same set of input arcs as the k 'th firing of d'

in 21.

.7-

7.
. . .

.. ,

-387-

For any input entry f in ag of an execution e = Ex(d,k)EEF, there is

a j such that T(f) has destination Dst(ej), and there is a 8 such that 6f

is a prefix of P. Since f is in rn(S,2), there is a prefix &p of 2 in which

p is the k th firing of d. Since there are fewer than k firings of d in e,

9 is a prefix of A. In S'A, d is enabled, and if d is a merge gate and

its number-J input arc b is its T (F) input arc, then d's control input

arc holds a true (false) token. The only reasonable way to guarantee that

a X can be constructed, having 0 as a prefix and containing a k th firing

of d which is not in 0, is to guarantee that d is enabled in S*G; further-

more, if d is a merge gate and b is its T (F) input arc, then d's control

input arc should hold a true (false) token in S'O. Then by Theorem 7.2-4,

any X with 6 as a prefix must contain a k th firing of d which removes a

token from b. The "worst case" of f = g, so 8 = a, motivates one of the

unexplained requirements included in Definition 4.3-5, that for C the

prefix of a whose reduction is 4P(6), d is enabled in S'E, with a prescribed

control input if it is a merge gate.

If f $ g, then E may be a prefix of 0; i.e.,

There can be no firing of d in a which is not in E, as the following

reasoning shows: The token on b in S'2 remains there until the next firing

of d (Theorem 7.2-4). If b is an output arc of an actor c, then f is an

output entry of Ex(c,n) where there are n firings of c in A. By causality,

Ex(c,n) is initiated before f; i.e., in 6, so by Theorem 4.3-2, there are

at least n firings of c in 2. Therefore, every firing of c in a is in 2.

If there are any firings of d in A but not in E, the first of them neces-

sarily removes from b the token which is on it in S'E. But there is a

"' '" & - l~ l l '"." .. . " " -" -

-388-

token on b in S'A, which could only be placed there by a firing of c in A

which is not in E. Thus, there are the same number of firings of d (k-i)

in A and E, hence in 6. Furthermore, d is enabled in S*e, with the proper

control input if it is a merge gate, and d's input arcs hold the same

tokens in S'A and in S'E, hence in S-0. Finally, if b is an output arc

of actor c, then there are the same number of firings of c in A and E,

hence in e (Lemma 7.2-7 below).

The above is true for any Ex(d,k)EEF, so every actor in the set

{dI 3k: Ex(dk)OEEF} is enabled in S0e. Similarly, for the target Ex(d',k')-

of h, d' is enabled in S''*', where 0' is the prefix of 2' whose reduction

is (a). Since the reductions of Band 0' are both 4(a), e and a' are

equal; since S and S' are equal states, S'-9' equals s'0. Therefore, d'

is also enabled in S'e (Corollary 7.1-2), with the same control input if

it is a gate. I.e., all actors in the set EA- =.dj 3k: Ex(d,k)EEF} U {d')

are enabled in S'0. As will be seen, any ordering di, d2 ,...,d, of the

actors in EA is an acceptable firing order in X if it satisfies the

following: If g initiates execution Ex(d",k"), then dI - d" and d2 - d',

where;Ex(d,k') is h's target: otherwise, dI a d'. No firing of an actor

in EA can disable or affect the input tokens of any other enabled actor in

the set (Theorem 7.2-4). Therefore, 8p1p2...p where (p is a firing of d ,,

is a firing sequence starting in S in which removes the tokens which are

on di's input arcs in S'O (Corollary 7.2-1 below). Now X is chosen to be

any halted firing sequence starting in S having 0 1 .. .
6 as a prefix.

For any entry f~ag, with transfer (s,Dst(e,j)) where e = Ex(d,k),

there are two cases to consider:

-389-

Case I: diDL

Then eEAFUEF. If e is in AF, it has already been argued that f is in

S(S,e), hence in (S,X). Otherwise, d is in RA, so there is some I such

that (p is a firing of di in ft112 . .. "z' Since there are exactly k-I

firings of d in 0 (Lemma 7.2-7), 9I is the kth firing of d in X. As

above, there is a prefix &p of 9 in which (p is the kth firing of d,

Sremoves a token of value V(f) from d's number-j input arc b, .and s is

Source(b,S,A). If d is a merge gate and b is its T (F) input arc, then

d's control input arc holds a true (false) token in S'e (Lemma 7.2-7),

hence in S'0t,...pi-l (Corollary 7.2-1). The token on b in S'A is on b

in S'e, and so is on b in Sp 1 ...p±_. Because of that token, b is an

output arc of actor c - c is not enabled in S. - c is not in EA - the

number of firings of c in e(Pl.. "i- equals the number in 9, which equals

the number in A (Lemma 7.2-7); from Lemma 7.1-2, then, Source(b,S,A),

which is s, equals Source(b,S,Ocp...ci). Therefore, the kth firing of

d in X, pio, removes a token of value V(f) from d's number-j input arc, so

there is an entry with value V(f) and transfer (s,Dst(Ex(d,k),J)) in

T }(S,X); . i.e., f Is in -n(S,X).

Case II: dEDL

Either d - ("OD",n) or d - (c,n) for some actor label c. There is a

token of value V(f) on arc b in S"2, where if d - ("OD",n), b is the

number-n program output arc, and otherwise b is the number-n input arc of

c; furthermore, s - Source(b,S,2). There is a 6 such that 6f is a prefix

of ag, and there is a prefix E of 2 whose reduction is 446). As before,

E is a prefix of 8, hence of X. By the second unexplained requirement in

Definition 4.3-5, there is a token on b in S'P, and if b is an input arc

-390-

of c, no firing sequence starting in S*' contains a firing of c. If b

is a program output arc, then the token on b in S'E is still on b in both

S'q and S'x. If b is an input arc of c, then c never fires after S in

either 2 or X, so the token on b in S*8 is there in S2 and S'X. Further-

more, if b is an output arc of an actor c', that token keeps c' disabled,

so there are the same number of firings of c' in both 2 and X as there are

in E; hence, Source(b,S,X) - Source(b,S,2) - a. Therefore, f is in n(S,X).

Thus it is seen that every entry in ag is in i(S,X). Very similar

reasoning, together with the fact that S'-"' equals Se8, proves that there

is an entry h in TI(S,X) vith at least the same transfer as h. Letting 6

be r(S,X) with every entry in agh stricken out - i.e., entry f2 follows

entry f1 in 8 if f f2 follows f1 in n(S,X) and neither is in agh - agh6 is

a permutation of r)(S,X). If agh6 is in J,' then agh is in J, so

T(h) - T(h) - t is in ET3 (ag), as was to be shown.

It is easily seen that agh5 is causal: For any prefix yf of agh8,

in which f is an output entry of an execution e, if f is in ag, or is h,

then e is initiated in T because ag and ah are causal. If f is in 6,

then the initiating entry of e precedes f, either because it is in agh or

because it precedes f in the causal 7)(S,X).

Proving that 4(a&gh) is the reduction of X is more difficult. Let-

ting the targets of g andh be Ex(d",k") and Ex(d',,') respectively,

*(agh) is given by:

a. if neither g nor h is an initiating entry, then 4(a), the reduction

of 0

b. if only g Is an initiating entry, then 4(a)a , where ca is a firing

of d"

I

-391-

c. if only h is an initiating entry, then 4(a)%b, where (pb is a firing

of d'

d. if both are initiating entries, then o(a b.

By construction, if g is an initiating entry, then there is a prefix ep1q,2

of X in which (1 is a firing of d" and (p2 is a firing of d'; otherwise,

there is a prefix &P 1 in which p1 is a firing of d*. From these two

observations, *(agh) is the reduction of a prefix A of X, the length of

which, m, equals the length of 4(agh).

Since 4P(r(S,X)) is the reduction of X (Lemma 4.3-3), the nth firing

in X is a firing of actor d iff the n execution initiated in 71(SX) is

an execution of d. For n 5 m, this is iff the nth firing in 4(agh8) is a

firing of d. The first m executions initiated in i(S,X) are initiated in

1(S,A). Ex(d,k) is among these iff there are at least k firings of d in

A iff Ex(d,k) is initiated in agi (by Theorem 4.3-2, since O(agh) is the

reduction of A). Therefore, for any n > m and any i, the ith initiating

entry in agh8, fl, precedes the nth such entry, f, iff f is in 8 and

either i 5 m, or i > m and f' is in 6 iff the execution initiated by fV is

initiated among the first m in I(S,X), or fV precedes f in q(S,X) (by con-

struction of 8) iff the the i th initiating entry in r(S,X) (which is not

necessarily f') precedes the nth initiating entry (which is necessarily f).

thThus, the n execution initiated in -(S,X) is an execution of d iff the

nth execution initiated in agh8 is an execution of f; hence the nth firing

in the reduction of X is a firing of d iff the nth firing in 4)(agh) is a

firing of d. I.e., *(zghg) is the reduction of X. J
The remainder of the proof that agh8 is in J, uses reasoning devel-

oped earlier in conjunction with the proof of comnutativity. It has been

-392-

seen that agh6 is a causal permutation of q(S,X) for which c(agh6) is the

reduction of X. The goal then is to show that for every prefix yf of

agh6, letting A be the prefix of X whose reduction is 4)(y), there is an

initial modified state S1 equal to S and a halted firing sequence 21

starting in S1, and there is a prefix y'f' of some eEJ , 1 , where

T(f') - T(f) such that, letting A' be the prefix of 21 whose reduction is

4t(Y'), S1 -A' equals S'A. If f is in ag, then since ag is a prefix of

PEJs, 2 , 1 S2 1 2, y'f' - yf, and A' a A; clearly S1'A, equals S-A.

If f is in 6, then there is a ' such that y'f is a prefix of (S,X)EJS X '

All input entries to f's target execution e are consecutive in r(S,X), so

all input entries to e in 6 are consecutive. For any other execution

e' $ e, the initiating entry of e' is not between f and e's initiating

entry in agh8, and so it precedes f (is in y) iff it precedes e's

initiating entry in agh6 iff it precedes e's initiating entry in I(SX)

(by the above paragraph) iff it precedes f in rn(S,X) (is in y'). There-

fore, there are the same number of initiating entries in y and y', so

there is some n such that I(v')I ID(y)! - n. D(y) is the length-n

prefix of 4(agh8) and 'Z(y') is the length-n prefix of 4 (rO(S,X)); both

1(cLgh6) and -t(r(s,X)) are the reduction of X, so 4(y') - 4(y). I.e.,

Y' and y have the same reduction, so S 1 ,' equals S*A.

Finally, if f - h, f's target is Ex(d',k'). Since that execution is

not initiated in y - ag, if g initiates an execution, it is not an execu-

tion of d'. Therefore, (y), the reduction of A, is either (a) or V(a)q

where (p is not a firing of d'. There is a prefix ah of P'EJs,,I, such

that T(h) hT() T 7(f), and the reduction of a is either (a) or 4(a)p.

Letting a' be the prefix of 2' whose reduction is 4'(a), A' equals either

-393-

A, or e where A - (p and (p is not a firing of d'. Therefore, S'A' equals

either S*A or 5'8. If S'*A' equals S'A, then the reasoning given at the

end of the discussion of Case I of the proof of commutativity (Section

7.2.3) applies for all f in agh8, so agh8 is in JS, . If S'A' equals S'O,

however, the following extended deduction is needed for f - h.

Since ah is a prefix of P'EJs 2,, d'QDL - d' is enabled in S'"A'

by Corollary 7.1-2, d' is enabled in the equal state S-0 - by

Theorem 7.2-4, d' is enabled in S-(p, since (p is not a firing of d';

furthermore, if d' is a gate, its control input arc holds the same token in

S*8, hence in S-Oc, as in S'"'. Otherwise, dEDL -d' -(c,n) and there is

a particular arc b (the number-n input arc of the actor labelled c if

c * "OD") which holds a token in S''A'; furthermore, if c 0 "OD", no

firing sequence starting in S'*A' contains a firing of c b b holds a token

in S'G, and no firing sequence starting in S'0 contains a firing of c

(Corollary 7.1-2) T in particular is not a firing of c - there is a

token on b in S'8 - S'A (Theorem 7.2-4) and no firing sequence starting

in S*A contains a firing of c. Therefore, agh6 is in JSx' so agh is in

J and T(h) = T(h) - t is in ETj(ag), as was to be proven. (As noted

earlier, for purposes of efficiency, a single lemma, Lemma 7.2-8 below,

is fashioned to cover the cases both that S''A' equals S,9 and that S'A'

equals S'A.)

The rigorous proof that every expansion satisfies the Persistence

Axiom is given on the following pages.

-394-

Lemma 7.2-7 Given any LD program P, let Int(P) be (St,J,IE). Let S be

any initial modified state for P and let 2 be any halted firing sequence

starting in S. Let ah be any prefix of any pJS 2 and let e be the

prefix of 2 whose reduction is 4(a). Let e - Ex(d,k) be any execution

which has an input entry in ah but is not initiated in a, and in which

d(ST-DL. Let g - Ent(e,j) be any input entry to e in ah and let b be

d's number-J input arc. Finally, let &p be the prefix of 2 in which V is

the kth firing of d. Then

A: d is enabled in Se, and if d is a merge gate and b is it T (F)

input arc, then d's control input arc has a true (false) token in

s'e.

B: There are exactly k-1 firings of d in e.

C: The token on b in S-" is on b in S'O.

D: b is an output arc of actor c = there are the same number of firings

of c in 6 as in A.

Proof:

(1) 0 is a causal permutation of rI(S,2), so g is in n(S,2) Def. 4.3-5

(2) Let T(g) be (s,Dst(e,j)). Then removes a token from b in 2, and

s - Source(b,S,,A) (1)+Alg. 4.3-1

(3) Let 6 be such that 6g is a prefix of P. Let S be the prefix of 2

whose reduction is 4(8). Then S and A are firing sequences

starting in S Def. 2.3-1

(4) d is enabled in S'c and if d is a merge gate and b is it T (F)

input arc, then d's control input arc has a true (false) token

in S* (3)+Def. 4.3-5

r

~-395-

(5) e is not initiated in 6 or in a (3)+(l)+Def. 4.2-6

(6) There are fewer than k firings of d in E and in 0

(3)+(l)+(5)+Thm. 4.3-2

(7) C is a prefix of A, as is 0 (6)

(8) Let s - Src(Ex(c',n),i). c'EDL - if b is an output arc of an actor

c, then there are zero firings of c in A, hence in 2

(2)+(3)+Lemma 7.1-3

(9) c'ESt-DL - c' - c, the label of a actor in P, b is an output arc

of c, and there are exactly n firings of c in A (8)+(2)+Alg. 4.3-1

(10) A Ex(c,n) is initiated in 6 (3)+(2)+(8)+(l)+Defs. 4.2-5+4.2-7

(11) there are at least n firings of c in 2 (3)+(l)+Thm. 4.3-2

(12) there are exactly n firings of c in S as well as in A (7)+(9)

(13) If b is an output arc of an actor c, then there are the same number

of firings of c in B as in A (8)+(9)+(12)

(14) There is a token on b in S'E (4)+Defs. 3.3-6+2.1-4

(15) There is no p such that cEQ(p) in S'E (14)+Cor. 7.1-1

(16) There is a prefix A of 2, JEj < JAI f JAI such that, for some p,

cEQ(p) in S'A - there is a prefix XpC of 2, IE1 < I× cn JAl

such that ciQ(p) in S'X but cEQ(p) in S'Xpc (15)

(17) = (c is a firing of c Def. 3.3-9

(18) If b is an output arc of an actor c, then there is no prefix A of

2, iEfl ! IAI n JAI such that, for some p, cEQ(p) in S'A

(15)+(16)+(17)+(13)

Prove that A, B, and C are true of every prefix X of a longer than E.

Proof is by induction on the length of X. Induction hypotheses are A with

r X substituted for 0, and

-396-

E: there are the same number of firings of d in X as in E, and

F: if there is a token on b in S'S, then the same token is on b in S'X.

Basis: X - E. E and F are vacuously true.

(19) A (4)

Induction step: Assume the induction hypotheses are true for any X,

EJ < JXI < JAI, and consider prefix Xp of 2.

(20) d is enabled in S'X and if d is a merge gate and b is its T (F)

input arc, then d's control input arc holds a true (false) token

in S'X ind. hyp.

(21) cp is a firing of d - there is no token on b in S'Xp

(20)+Defs. 3.3-9+2.2-1+2.1-5

(22) - there is a prefix A p' of 2, JX pj < JAp'j f jAJ such that there

is no token on b in S'A but there is one in S-A' (2)

(23) - b is an output arc of an actor c and either p' is a firing of c

or there is a p such that cEQ(p) in S'A Defs. 3.3-9+2.2-5

(24) p' is not a firing of c (22)+(13)

(25) There is no p such that cEQ(p) in S'A (22)+(18)

(26) (p is not a firing of d (21)+(23)+(24)+(25)

(27) A for Xq (20)+(26)+Thm. 7.2-4

(28) E for Xp (26)+ind. hyp.

(29) If there is a token on b in S.CS, then the same token is on b in S'X

ind. hyp.

(30) F for X0 (29)+(26)+Thm. 7.2-4

Thus it is proven by induction that

(31) For any prefix X of 2, II -< IX - JI, d is enabled in S'X and if

d is a merge gate and b is it T (F) input arc, then d's control

-39 7-

input arc holds a true (false) token in S*X,

(32) if there is a token on b in S*S, it is on b in S'X, and

(33) there are the same number of firings of d In A~ as in E, which is k-i

(34) Since gEcah, 161 f- lal, so 14401) !i 14(a)l (3+Def. 4.3-4

(35) JE -5 101 JIl (3)+(34)+(7)IDef. 2.4-5

(36) A (35)+(31)

(37) B - (35)+(33)

(38) C (35)+(14)+(32)

(39) D (35)+(13)

Corollary 7.2-1 Given any program P, let S be any initial modified state

of P and let e be any firing sequence starting in S. Let di, d 2 ' ""* d M

be any ordered collection of distinct actors in P, all of which are

enabled in S*e. Then

A: 0cp1P2 .. (Pm' where for i-, , is a firing of di, is a firing

sequence starting in S, and

*B: for I - ,.,,each token on an input arc of d i in SeO is on that

arc in Sc 1 .p 1

Proof: By induction on the index of the actors in the collection d1 , d 2 1

...dm. Induction hypotheses are: For any n, 1 -5 n S-m

A: &p..pis a firing sequence starting in S,

B: for i-l,...,n, for J-i,...,m, each token on an input arc of d In

S9e is on that arc in S*9pl#..., p,_1 and

C: For i-n,...,m, d i is enabled in S&

Basis: n -1.

(1) d I is enabled in S*6 for i-n,...,m. ft1. where (,is a firing of

-398-

d is a firing sequence starting in S. For i-1, for J-i,...,m,

each token on an input arc of d in S'0 is on that arc in S'e

Def. 2.3-1

Induction step: Assume that the induction hypotheses are true for any n,

_n < m.

(2) For i-n,...,m, di is enabled in Sp 1 ... pn_1 and 8(1 ... n is a

firing sequence starting in S ind. hyp.

(3) For i-n+l,...,m, di is enabled in Stp... p (2)+Thm. 7.2-4

(4) fti...pnn+l is a firing sequence starting in S (3)+Def. 2.3-1

(5) For i-1,...,n, for J-i,...,m, each token on an input arc of d in

SeO is on that arc in Sp 1 ... qi~ ind. hyp.

(6) For i-n+l, for J-i,...,m, each token on an input arc of d in S'6

is on that arc in S'p 1.. 1 -2 and then in S' fl... i_2 i-l

(5)+(2)+Thm. 7.2-4

(7) For i-l,...,n+l, for J-i,...,m, each token on an input arc of dj

in S*9 is on that arc in S..... I"i-l (5)+(6)

Thus it is proven by induction that A and B are true for n-m; i.e.,

EOl ... %is a firing sequence starting in S, and for i1,...,m, each

token on an input arc of di (in particular) in s*e is on that arc in

S" eP1 .. "(i-1 A

Lema 7.2-8 For any program P, let S be any initial state for P, and let

2 be any halted firing sequence starting in S. Let o be any causal per-

mutation of rI(S,2) such that t(w) is the reduction of 2. If

(1) For every prefix ck of co, letting Ex(d,m) be the target of k and

letting A be the prefix of 2 whose reduction is *(c), there is an

-399-

initial state S' for P and a halted firing sequence 2' starting in

S', and there is a prefix 6 'k' of some PEJS, 2 1 such that T(k') = T(k)

and, for A' the prefix of 2' whose reduction is 4('), S'-A' equals

either S', or SC where A - F4 and (p is not a firing of d,

then w is in J

Proof:

(2) Let ek be any prefix of o, let the destination in T(k) be

Dst(Ex(d,m),J), and let A be the prefix of 2 whose reduction is

4'(c). Then there is an initial state S' for P and a halted firing

sequence 2' starting in S', and a prefix &'k' of some JS, 2 ,

such that T(k) - T(k) and, for A' the prefix of 2' whose reduc-

tion is ('), S'*A' equals either S'A or sE where E - and

is not a firing of d (1)

(3) If A - Sp and (p is not a firing of d, then every input arc of d

which holds a token in S'E holds the same token in S'A, and d is

enabled in S'E z d is enabled in S'A (2)+Thm. 7.2-4

(4) Every actor is enabled in S"A' iff it is enabled in any state

equal to S'' Cor. 7.1-2

(5) Every control arc holds only non-pointer-valued tokens Def. 2.2-1

(6) Every control arc holds tokens of the same value in two equal

states (5)+Defs. 7.1-2+3.4-l

(7) If S*A equals s''A', then d is a gate - its control input arc holds

the same token in S'A as in S''A', and d is enabled in S'A' -

d is enabled in S'A. If S-E is equal to S'*' and (p is not a

firing of d, then d is enabled in S'A' - d is enabled in s*E -

-400-

d is enabled in S' A if d is a gate, its control input arc holds

a token in S'*' - that arc holds the same token in S*., hence in

S" (6)+(4)+(3)+Defs. 3.3-6+2.1-4

(8) If djDL, let b be the number-J input arc of the actor labelled d.

That actor is enabled in S'"A', hence in S'A, and if it is a

merge gate and b is its T (F) input arc, then its control input

arc holds a true (false) token in S''1', hence in S'A

(2)+(7)+Def. 4.3-5

(9) Since N and V are infinite, for any firing sequence X, there isp

an equal firing sequence X' such that the multiset of pointer-node

pairs in the Copy firings in X' is consistent with the heap

in S''A' Defs. 2.2-1+2.4-5+5.2-3

(10) For any firing sequence starting in any state equal to S'-A., there

is an equal firing sequence starting in S"'* (9)+Cor. 7.1-2

(11) If S'A equals S'', there is a firing sequence starting inS-Awhich

contains a firing of actor c - there is a firing sequence starting

in S''*' which contains a firing of c. If S'E equals S'', there

is a firing sequence X starting in S'A which contains a firing of

c - there is a firing sequence qX starting in S'.E which contains

a firing of c - there is a firing sequence starting in S''A'

which contains a firing of c (10)+Defs. 2.4-5+2.3-1

(12) dMDL and d - (c,n) - letting b be the number-n program output arc

of P if c - "OD", or else the number-n input arc of the actor

labelled c, there is a token on b in S'A', and [c is an actor

label - there is no firing sequence starting in S'-' which

contains a firing of c] (2)+Def. 4.3-5

1

-401-

(13) there is a token on b in S*A, if S"A equals S'A, or in S'E,

if S*8 equals S"'& (2)+Defs. 7.1-2+3.4-1

(14) A (c is an actor label - there is no firing sequence starting in

S'A which contains a firing of c, and if S* equals S"', V is

not a firing of c] (2)+(11)

(15) - there is a token on b in S'A Thm. 7.2-4

(16) w is in Jsg (2)+(8)+(12)+(14)+(15)+Def. 4.3-5

Theorem 7.2-5 Every expansion (Int,J) from EE(LD M) satisfies the

Persistence Axiom.

Proof:

(1) Let J be any job in J. There is an LD program P such that Int is

Int(P), and there is an equivalence class E of initial modified

states of P such that J - JE Defs. 4.3-1+4.3-2

(2) Let ag be any computation in J. There is an initial modified state

SEE and a halted firing sequence 2 starting in S such that ag Is

a prefix cf some P in JS, (1)+Def. 4.3-3

(3) Let 6 be the prefix of 2 whose length equals that of 4,(a). Then

0 is a firing sequence starting in S whose reduction is 4(a)

Lemma 7.2-2+Def. 2.3-1

(4) Let Int(P) - (St, /,IE). Let EF be the set of executions {Ex(dk)I

dESt-DL and Ex(d,k) is not initiated in a but has an input entry

in ag}. Let e - Ex(d,k) be any execution in EF. Let A p be the

th
prefix of 2 in which p is the k firing of d. Let f - Ent(e,j)

be any input entry to e in ag and let b be d's number-j input

arc. Then

" _..1,

-402-

(4a) d is enabled in S'O, and if d is a merge gate and b is its T (F)

input arc, then d's control input arc holds a true (false) token

in Se,

(4b) there are exactly k-i firings of d in e,

(4c) there is a token on b in S"A which is on b in S', and

(4d) b is an output arc of an actor c - there are the same number of

firings of c in e as in A (2)+(3)+Leima 7.2-7

(5) Let t be any transfer in ET (a) except T(g). Then there is an

entry h with T(h) - t such that ah is in J Def. 6.2-2

(6) There is an initial modified stateS'EE and a halted firing sequence

2' starting in S' such that ah is a prefix of some PEJ , 1,

(1)+(5)+Df. 4.3-3

(7) Let 0' be the prefix of 2' whose length equals that of 0(a). Then

0' is a firing sequence starting in S' whose reduction is (a)

(6)+Lemma 7.2-2+Def. 2.3-1

(8) Let Dst(e',J') where e' - Ex(d',k') be the destination in T(h).

Then e' has an input entry in ah but is not initiated in a

Defs. 4.2-5+4.2-6

(9) If d'ESt-DL, let tI'p' be the prefix of 2' in which cp' is the kith

firing of d', and let b' be the number-J' input arc of d'. Then

(9a) d' is enabled in s'Be', and if d' is a merge gate and b' is its

T (F) input arc, its control input arc holds a true (false) token

in S*"e',

(9b) there are exactly k-1 firings of d' in e,

(9c) there is a token on b' in S'A' which is on b in S'-e', and

(9d) b' is an output arc of an actor c' there are the same number of

" -!V
t -403-

firings of c' in e' as in A' (4)+(6)+(7)+(8)+Leiva 7.2-7

(10) S' equals S (1)+(2)+(6)

(11) e' equals 8 (3)+(7)+Def. 2.4-5

(12) S'*e' equals s-e (l0)+(11)+Thm. 7.1-2

(13) d' is enabled in S6e (12)+(9a)+Cor. 7.1-2

(14) If d' is a merge gate and b' is its T (F) input arc, then its

control input arc holds a true (false) token in S*O

(9a)+(12)+Defs. 7.1-2+3.4-1

(15) There are exactly k'-l firings of d' in 0 (9b)+(ll)+Def. 2.4-5

(16) Let EA be the set {dj 3k: Ex(dk)EEF}, if dEDL, or {dj 3k:

Ex(d,k)EEF}U{d'}, if d'ESt-DL. Then each actor in EA is enabled

in s-e (4)+(13)

(17) Let dl, d2 , ... , d. be any ordering of the actors in EA satisfying

the following: If g initiates Ex(d",k"), then d1 - d" and d2 - d',

otherwise, d, d'

(18) l 2... m, where for ipl,...,m, Pi is a firing of di, is a firing

sequence starting in S, and for iml,...,m, each token on an input

arc of d in Se is on that arc in

(2)+(3)+(16)+(17)+Cor. 7.2-1

(19) P is a causal permutation of rI(S,Q) and P' is a causal permutation

of r(S', ') (2)+(6)+Def. 4.3-5

(20) Let X be any halted firing sequence starting in S which has

ft, ... aas a prefix. Let AF be the set of executions {Ex(d,k)I

dESt-DL and Ex(d,k) is initiated in a). Let f be any entry in ag.

Then f is in i)(S,P2) (2)+(19)

(21) Let a - Ex(d,k) be the target of f. Then dESt-DL - e(AFUEF (4)+(20)

-404-

(22) A letting V(f) be v and T(f) be (s,Dst(Ex(d,k),J)), and letting

b be the number-j input are of d, there is a prefix &p of 2 in

th
which ip is the k firing of d, (p removes a token of value v

from b, a - Source(b,S,A), and f is in i(S.Ap) (20)+Alg. 4.3-1

(23) dESt-DLAeEAP - there are at least k firings of d in e

(l)+(2)+(19)+(3)+Thm. 4.3-2

(24) &p, is a prefix of 0, hence of X (22)+(20)

(25) -there is a prefix &cp of X such that f is in -n(S.AT) (22)

(26) f is in n~(S,X) Aig. 4.3-1

(27) d(St-DLAeEEF -dEKA (16)

(28) -there is an i such that d -di in the ordering of the actors in

RA (17)

(29) - in Ekpl... %, pj is a firing of d (18)

(30) dESt-DLAe(EF - since all actors in EA are distinct, (P. is the kt

firing of d in X (27)+(29)+(4b)+(20)

(31) A [d is a merge gate and b is its T (F) input arc -* d's control

input arc holds a true (false) token in S0e (4a)

(32) -d's control input arc holds a true (false) token in S~ftl ... qpi1J

(28)+(18)

(33) -there is a token on b in S*O (27)+(16)+(3l)+Defs. 3.3-6+2.1-4

(34) -there is a token on b in S~ftl... p,_, identical to the one on b

in Sqi, and it is removed by 01

(28)+(4c)+(l8)+(3l)+(32)+Defs. 3.3-9+2.1-5

(35) A [b is an output arc of an actor c -c is not enabled in Sle

Defs. 3.3-6+2.1-4

(36) -c0EA (16)

-405-

(37) the number of firings of c in Ni... qi is equal to the number

of firings of c in e (18)+(17)

(38) which is equal to the number of firings of c in A] (30)+(4d)

(39) S equals S Defs. 7.1-2+3.4-1

(40) dESt-DLAeEEF - Source(bS.l 1...qpi_1) - Source(b,S,A) - s

(39)+(3)+(18)+(35)+(37)+(22)+(38)+Lemaa 7.1-3

(41) - f is in (SX) (30)+(34)+(22)+Alg. 4.3-1

(42) For any entry f~ag whose target is Ex(dk), dESt-DL = f is in 'q(SX)

(20)+(21)+(23)+(26)+(40)+(41)

(43) h is in r(S',2') (6)+(19)

(44) Let Ex(d',k') be the target of h. Then d'(St-DL - d'(EKA (16)

(45) A letting T(h) be (s,Dst(Ex(d',k'),J')), there is a prefix A'' of

2' in which P' is the k'th firing of d', p' removes a token from

b', the number-j' input arc of d', and s - Source(b',S',')

(43)+Alg. 4.3-1

(46) - there is an i such that d = di in the ordering of actors in EA(17)

(47) - in N, ...pm , p, is a firing of d' (18)
th

(48) - since each actor in EA is distinct, (pi is the k' firing of d'

in X (45)+(8)+(15)+(20)

(49) A [d' is a merge gate and b' is its T (F) input arc - its control

input arc holds a true (false) token in S*e (45)+(18)+(14)

(50) - its control input arc holds a true (false) token in S'Gl... i_l1

(46)+(18)

(51) - there is a token on b' in S'e (44)+(16)+(49)+Defs. 3.3-6+2.1-4

(52) - there is a token on b' in S*Opl... il, and it is removed by

(46)+(18)+(49)+(50)+Defs. 3.3-9+2.1-5

i-i

-406-

(53) A [b' Is an output arc of an actor c c is not enabled in s6e

Defs. 3.3-6+2.1-4

(54) - ctEA - the number of firings of c in ft 1-'- equals the number

of firings of c in 6 (16) +(18) +(17)

(55) which equals the number of firings of c in e' (l1)+Def. 2.4-5

(56) which equals the number of firings of c in A'] (45)+(8)+(9d)

(57) -Source(b',S,Op .-.(Pi 1l) - Source(b',,A',b) Ws

(l0)+(7)+(18)+(53)+(54)+(56)+(45)+Lemma 7.1-3

(58) - there is an entry in T)(S,X) with transfer (sDst(Ex(d,k'),J')),

which Is T(h) (48)+(52)+(45)+Alg. 4.3-1

(59) Let f be any entry in ag, and let 8 be such that 6f is a prefix of

ag, hence P3. Let E be the prefix of 2 whose length equals that

of 408). Then E is a firing sequence starting in S whose reduc-

tion is 4(8 (2)+Lemma 7.2-2+Def. 2.3-1

(60) I'I'(6) I :5 14,(a) I(59)+Def. ,4.3-4

(61) S' Is a prefix of 6, hence of X (3)+(59)+(60)+(20)

(62) Let Ex(dk) be the target of f. d*St-DL -d - (c',n) where c' is

either the label of an actor in P or "OD", there is an arc b

uniquely related to d which holds a token of value V(f) in S*2,

and TMf - (s,Dst(Ex(d,0),1)) where s - Source(b,S,2) (20)+Alg. 4.3-1

(63) A there is a token on b in S*E A [C' is the label of an actor in P

-in no firing sequence &p starting in S-E is (p a firing of c']

(59)+(2)+Def. 4.3-5

(64) - [c' is the label of an actor in P -b is an input arc of c'

Ag. 4.3-1

(65) - for no firing sequence &p starting in S-C3 is there a token on b

-407-

in S'VSA but none in S'C-Ap] (63)+Def. 3.3-9+2.1-5

(66) A [c' is not the label of an actor in P ., b is a program output arc

Aig. 4.3-1

(67) -b is not an input arc of any actor Def. 2.1-1

(68) - for no firing sequence &p starting in S.S is there is a token on

b in S.SA but none in SIRAO] Defs. 3.3-9+2.1-5

(69) - for any firing sequence Ap starting in S.S, there is a token on

b in S.E~ p (63)

(70) - there is a token on b in S.X (61)

(71) A [b is an output arc of actor c - for every firing sequence

starting in S., c is not enabled in S.CA Defs. 3.3-6+2.1-4

(72) A there is no p such that cEQ(p) in S'SA Cor. 7.1-1

(73) - there are the same number of firings of c in 9 as in 62, and there

are the same number of firings of c in E as in X] (59)+(61)

(74) - Source(b,S,X) - Source(b,S,2) -s (39)+(62)+Lemma 7.1-3

(75) A for every firing sequence A(p starting in S*', any token on b in

S*E&p is on b in S'A (71)+(72)+Defs. 3.3-9+2.1-5

(76) - there is a token of value v on b in S's, hence S'X (62)+(59)+(61)

(77) - f is in q(S,X) (62)+(70)+(74)+Alg. 4.3-1

(78) For any actor c, there is a firing sequence Ap starting in S'e in

which (p is a firing of c - since N and V are infinite, there is
p

an equal firing sequence A'cp' such that the multiset of pointer-

node pairs in the Copy firings in tA'q' is consistent with the

heap in S'"e' Defs. 2.2-1+2.4-5+5.2-3

(79) - there is a firing sequence A'(p' starting in S"e' in which P' is

a firing of c (12)+Cor. 7.1-2+Def. 2.4-5

-408-

(80) Let Ex(dk) be the target of h. dtSt-DL -ad - (c',n) where c' is

either the label of an actor in P or "OD", there is an arc b

uniquely related to d which holds a token in S'-2', and T(h) is

(s,Dst(Ex(dO),l)) where s - Source(b,S',Q') (43)+Alg. 4.3-1

(81) A there is a token on b in Sloe' A [C' is the label of an actor in

P -in no firing sequence 4c starting in Sloe6' is (p a firing of c]

(6)+(7)+Def. 4.3-5

(82) -there is a token on b in S*O (12)+Dtfs. 7.1-2+3.4-1

(83) A [C' is the label of an actor =*there is no firing sequence &P

starting in S09 in which cp is a firing of c'] (7 8)+(79)

(84) -[c' is the label of an actor -b is an input arc of c'

(80)+Alg. 4.3-1

(85) - for no firing sequence &p starting in s'8'l (s-e) is there a

token on b in S'.0'A (S6eA) but none in S'eO'&p (SeO&p)]

(81)+(83)+Defs. 3.3-9+2.1-5

(86) A [C' is not the label of an actor =*b is a program output arc

(80)+Alg. 4.3-1

(87) -b is not an Input arc of any actor Def. 2.1-1

(88) - for no firing sequence A~p starting in Sloe' (seO) is there a

token on b in S'-e'LA (S,8A) but none in S'0'Acp (S'OAp)]

Defs. 3.3-9+2.1-5

(89) - for every firing sequence &p starting in Sloe' (Se0), there is

a token on b in S'8'&p9 (seB&p) (81)+(82)

(90) -there is a token on b in S*X (20)

(91) A [b is an output arc of actor c -*for no firing sequence A starting

in Sloe' (s0G) is c enabled in S'6''A (SIOA) Defa. 3.3-,6+2.1-4

________________A

-409-

(92) there are the same number of firings of c in 0' as in 2' and the

same number of firings of c in 0 as in X (7)+(20)

(93) -there are the same number of firings of c in X as in 2']

(11)+Def. 2.4-5

(94) -Source(b,,S,X) - Source(b,S',2') - s

(lO)+(20)+(6)+(80)+(90)+Lemma 7.1-3

(95) =*there is an entry in rj(S,X) with transfer (s,Dst(Ex(d,O),1)),

which is T(h) (20)+(90)+(89)+Alg. 4.3-1

(96) Let S be the entry in il(S,X) such that T(R) = T(h). Let 6 be the

sequence of entries derived by striking every entry in ag, plus h,

from r)(S,X). Then agi8 is a permutation of r1(S,X), and for any

two entries f I and f, in 8, f 1 follows f 2 in 8 iff f 1 followsf2

in 'r(S,X) (42)+(62)+(77)+(44)+(58)+(80)+(95)+Def. 4.2-6

(97) Let m be the length of -4)(agR). 4'(agh) is 4)(a) followed by zero,

one, or two firings Def. 4.3-4

(98) 41(agh) - NXa) -the reduction of e is 4'(agh) and e is a prefix

of X (3)+(20)

(99) 4,(agfi) = 4)(a)(p a= one of g and R is an initiating entry and [g

initiates an execution Ex(d",k") ~ a is a firing of d" Def. 4.-

(100) A lis a firing of d"] (17)+(18)

(101) A [Ki initiates an execution Ex(d',k') in agh = g does not initiate

an execution in ag and (pa is a firing of d' Defe. 4.2-6+4.3-4

(102) -pis a firing of d'] (17)+(18)

(103) A the reduction of is one firing longer than the reduction of

0, which is -1,(a), so it is 4)(a)p awhere 4, is a firing of the

same actor as p,(3)+(96)+Defs. 2.4-5+4.3-4

-410-

(104) - the reduction of kp is 4)(agh) and 8kl is a prefix of X (99)+(20)

(105) -P(cgh) - -(a)papb = both of g and h are initiating entries

Def. 4.3-4

(106) = g initiates an execution Ex(d",k") in ag and g initiates an

execution Ex(d",k") in ag (96)+Def. 4.3-4

(107) = a is a firing of d", as is DI, and (pb is a firing of d', as is

(P2 (17)+(18)+Def. 4.3-4

(108) A the reduction of 41P2 is two firings longer than the reduction

of 0, which is 4,(a), so it is P(a)pa b where a is a firing of the

same actor as 1 and pbr is a firing of the same actor as (2

(3)+(96)+Defs. 2.4-5+4.3-4

(109) - the reduction of p1(P2 is a(agh) and 41 2 is a prefix of X

(305)+(20)

(110) 4 (agh) is the reduction of the prefix A of X whose length equals

that of 4(agh), i.e., m (97)+(98)+(99)+(104)+(105)+(109)

(111) Let yf be any prefix of agh8 and let e be the execution of which

f is an output entry. fEag z there is a prefix yf of P in which

f is an output entry of e (2)

(112) - e is initiated in y (19)+Def. 4.2-7

(113) f - h - a is a prefix of y and h is an output entry of e - there

are at least as many input entries to e in y as in a(96)+Def. 4.2-5

(114) A e is initiated in a (6)+(19)+Def. 4.2-7

(115) -e is initiated in y Def. 4.2-6

(116) n(S,X) is causal wrt Int and is a computation for Int

(1)+Leina 4.3-1

(117) f is in r)(S,X) (111)+(96)

-411-

(118) Let e -Ex(d,k). In(I(d)) input entries to e precede f in rl'SX)

(lll)+(16)+(117)+(4)+Defs. 4.2-7+4.2-6

(119) There are In(I(d)) input entries to e in agh6 (118)+(96)

(120) f E8B no entry follows f In agh5 unless it follows f in Tj(S,X) (96)

(121) In(Jd)) Input entries to e precede f in agh& (119)+(118)

(122) e is initiated in y (l11)+Def. 4.2-6

(123) e is initiated in y (11)+(112)+(113)+(115)+(120)+(122)

(124) agh6 is a causal permutation of T)(S,X) (lll)+(123)+(96)+Def. 4.2-7

(125) Let Z be the set of executions {Ex(d,k)j dESt-DL and Ex(d,k) is

initiated in r)(S,X) 1. Let Y be the set (Ex(dk)l dESt-DL and

Ex(d,k) is initiated in rI(S,A)}. Since il(S,A) is a prefix of

r1(S,X), every initiating entry to an execution in Z-Y is preceded

in r1(S,X) by the initiating entries to all executions in Y

(10)+Alg. 4.3-1

(126) For any d(St-DL, In(1(d)) > 0 Defs. 4.3-2+4.3-1+2.1-2

(127) For any e - Ex(d,k), eEY iff there are In(I(d))> 0 input entries

to e in TI(S,A) and dESt-DL (125)+(126)+Def. 4.2-6

(128) if f there are at least k firings of d in A and dESt-DL Lemma 4.3-1

(129) iff e is initiated in agK (1)+(4)+(20)+(124)+(1l0)+Thm. 4.3-2

(130) if fat least In(I/(d)) input entries to e are deleted from ri(S,X)

to get 8 (96)

(131) Z is also the set {Ex(d,k)I d(St-DL and Ex(d,k) is initiated in

agh6j (125)+(124)+Def. 4.2-6

(132) The number of initiating entries in agh to executions in Z equals

the length of 4'(agK) which is m (131)+(110)+Def. 4.3-4

th(133) For n > m, let e be the n execution from Z to initiate in agR6.

-412-

Then f, the initiating entry of e in agh6, is in 8 (132)

(134) e is in Z-Y (133)+(129)+(127)

(135) Let e' -Ex(d',k') be any other execution in Z and let fV be its

initiating entry in agh6. Then fV precedes f in agh& if f V is

in agg, or fV precedes f in r)(S,X) and fever than In(I(d')) input

entries to e' are deleted from rj(S,X) to get 8 (96)+Def. 4.2-6

(136) iff e' is in Y, or V precedes f in r)(S,X) and e'tY

(127)+(129)+(130)

(137) iff e' is in Y and the initiating entry to e' precedes f in TI(S,X)

or evAY and ft precedes f in r)(S,X) 1ff the initiating entry to

ev precedes f in qI(S,X) (134)+(125)

(138) For a >. m, the n thexecution from Z initiated in agR6 is the n t

execution from Z initiated in -n(S,X) (135)+(137)

(139) ep{q(S,X)) is the reduction of X and ri(S,X) is in J SI

(20)+Lemma 4.3-3

(140) For any n > m, the n thfiring In the reduction of X is a firing

of d 1ff the n thfiring in 4)(r(S,X)) is a firing pf d (139)

th
(141) if f the n execution from Z initiated in rn(S,X) is an execution

of d (125)4-Def. 4.3-4

(142) if f the n thexecution from Z initiated in 49h8 is an execution of

d (138)

(143) 1ff the n th firing in 4V(igh8) is a firing of d (125)+Def. 4.3-4

(144) For any n 5. the n th firing in the reduction of X is the n t

firing in the reduction of A (110)+Def. 2.4-5

(14.5) which is the n thfiring in 4t(agg) (110)

(146) which Is the n thfiring in #(cg) Def. 4.3-4

-413-

(147) <PGzgh8) is the reduction of X (140)+(143)+(144)+(146)-Def. 2.4-5

(148) Let yf be any prefix of agi6, let A be the prefix of X whose

reduction is 4 (y), and let the destination in T(f) be Dst(e,j)

where e - Ex(d,m) (147)+LemmA 7.2-2

(149) fEag -- there is a prefix yf of PES, such that, for A~' the prefix

of 2 whose reduction is 4)(y-), A equals A~' (2)+Def. 2.4-5

(150) -S*A equals S-61 (39)+Thm. 7.1-2

(151) All INd)) input entries to e are consecutive in TI(S,X)

(148)+Alg. 4.3-1

(152) All input entries to e which are left in 6 are consecutive

(151)+(96)

(153) f(6 -there is a prefix y'f of -n(SX)EJsx (96)+(139)

(154) -for any execution e' #e froms Z, the initiating entry fV to e'

precedes f in yf (i.e., is in y) iff it precedes e's initiating

entry in ag96 (148)+(152)

(155) iff the initiating entry to e' precedes the initiating entry to

e in T)(S,X) (133)+(135)+(137)

(156) iff the initiating entry to e' precedes f in r)(S,X) (i.e., is in

Y 1) (151)+(153)

(157) -3n: 14,(y~')I- I 4(Y) I -n (125)+Def. 4.3-4

(158) - c(y') is the length-n prefix of $(-(,),which is the

reduction of X (139)+(153)+Def. 4.3-4

(159) A 4'(y) is the length-n prefix of 4'(agR6), which is the reduction

of X (147)+(148)+Def. 4.3-4

(160) for A' the prefix of X whose reduction is 4,(y'), A' equals A

(148)+Def. 2.4-5

-414-

(161) S*A' equals StA (39)+Thm. 7.1-2

(162) Ex(d,m) is not initiated in y (148)+Def. 4.2-6

(163) f -h y - ag -if g is the initiating entry in agh of an execution

d"ESt-DL, then d" 0 d, so -1()- 4)(a)V, where V is not a firing

of d, otherwise 4&ry) - 4(a) (162)+Def. 4.3-4

(164) - there is a prefix ah of P'EJS,2 uhthtTf T(h) - T(h)

and 4 (y) equals either -Da) or 41,(a)cp where p is not a firing of d

(96)+Def. 4.3-4

(165) - letting A' be the prefix of 2' whose reduction is 4>(a), A'

equals either A or e where A - &kp and p is not a firing of d

(148)+Def. 2.4-5

(166) - S'-A' equals either S*A or S*O where A - Ocp and V is not a

firing of d (10)+Thm. 7.1-2

(167) agiR8 is in J (124)+(147)+(148)+(149)+(2)+(150)+(153)+(20)+(160)+s'x
(161)+(163)+(l64)+(6)+(165)+(166)+Lema 7 .2-8

(168) agR is in J (167)+(2)+(20)+(1)+Def. 4.3-3

(169) T(h) - T(h) -t is in ET (ag) (168)+(96)+Def. 6.2-2

(170) (Int,J) satisfies the Persistence Axiom (1)+(2)+(5)+(169)+Ax. 6.2-5

7.3 Determinacy and Functionality

The preceding two sections have proven that EE(LJ),M) is an S-S model

and that every expansion from it satisfies the Determinacy Axioms. By

Theorem 6.4-1, then, every expansion is determinate. This section v
contains the final and most complex proof of the thesis, that if the

expansion (Int,J) of an LDprogram P is determinate, then P running on

the modified interpreter is functional.

-415-

P is functional iff for any two equal initial modified states S1 and

S2 for P, and any two halted firing sequences 21 and 22 starting in S,

and S2 , S2 22 equal3 S 12 1 . There is an equivalence class E of initial

states which contains both S, and S2, so Co1
= n(SI,21) and 2 "](S2'22)

are both in JE (Lemma 4.3-3). Denoting either of wI and w 2 by ca, if w0 is

not halted in JE' then it is a proper prefix of some fEJS, 2' where s'

equals S and 2' is a halted firing sequence starting in S'. Since 4()

is the reduction of 2', ((0) is the reduction of a prefix e of 2'

(Lemma 7.2-4). But 4'(o) is also the reduction of 2 (Lemma 4.3-3), so e

equals 2. Therefore, S''e equals S'2, and since no actor is enabled in

S'2, no actor is enabled in S'-e, so 2' - e, which is 2. The number of

tokens which appear at the nth firing in 2 equals the number which appear

at the nth firing in 2'. Since co already contains an entry for each

token which appears, P can have no more entries. I.e., co cannot be a

proper prefix of any computation in JE' so it is halted in JE (Lemma 7.3-1

below). Therefore, o1 and w2 are two halted computations in the same

job, and so are equivalent computations.

By construction (Algorithm 4.3-1), there is a token of value v,

(v,R), or (v,W) on an arc b in S'2 1 (S2"22) iff there is an entry in 0o1

(W 2) with value v whose transfer has a destination given by

Dst(Ex((dj),O),l) if b is the number-j input arc of the

actor labelled d,

Dst(Ex(("OD",J),O),l) if b is the number-j program output arc

By equivalence, there is a one-to-one pointer correspondence F such that

there is an entry f in co1 iff there is an entry g in c02 with the same

transfer, and if V(f) is not a pointer, V(g) V(f), otherwise

-416-

V(g) - F(V(f)). Therefore, there is a token on b in S,'9 1 iff there is

one in S212 ,2 and either their values are the same non-pointer, or one is

(p,R) or (p,W) and the other is (F(p),R) or (F(p),W).

For any actor d, the number of firings of d in 2I equals the number

of executions of d which have input entries in o1 which equals the

number of executions of d which have input entries in w2 which equals the

number of firings of d in 2"2 If d is a gate and its control input arc

is its number-J input arc, then the control input to the kth firing of d

in S21 (22) equals the value of Ent(Ex(d,k),J) in (z2), which is not a

th
pointer; hence the kt firings of d in 2i and 22 have the same control

input. The kh firing of d in 21 (2) removes a token from an output arc

of d' and is preceded by exactly k' firings of d' iff there is an entry

in o1 (w2) with transfer (Src(Ex(d,k'),i),Dst(Ex(d,k),J)) for some i and

J; therefore, the kth firing of d in 21 removes a token from an output

arc of d' and is preceded by k' firings of d' iff the kth firing of d in

22 removes a token from an output arc of d' and is preceded by k' firings

of d'. From these three facts, for each arc b which holds pointer-valued

tokens in S1 .21 and S2 .2 , either both are read pointers or both are

write pointers (Lemma 7.2-5). Therefore, if b holds a token of value

(p,R) ((pW)) in S ,21, it holds a token of value (F(p),R) ((F(p),W)) in

S2 "22 "

The major task left is to prove that, letting the heap in si.2i,

1-1,2, be UW (NIn!,SM), there is a one-to-one mapping 1: N -+ N2

such that, for every value (p,R) or (p,W) on an arc in S1"210

Ut.nJJ(?(p)) 1 U1 .fl1(p). Letting the heap in S i be Ui - (flini,SMi),

there is a one-to-one mapping 1l: N1 - N2 such that, for every pointer p

....

-417-

on an arc in S1, there is a pointer p' on that arc in S2, and

U2.r12 (p') -u 1 .lI(p). I is built on 11 thusly:

1 1 (n) if nN1

n I (F(p)) if ntN1 and F(p) is defined

where p is such that rlj(p) - n. In this way, rI2(F(p)) - I(flj(p)), at

least if p is not in dom fl1.

Ideally, Ui would be shown to be the heap determined by wi from Ui;

then the equality of reaches in the equivalent computations a,, and &2

would imply that each of U1 and U2 had been altered in the same way.

Unfortunately, the heap determined by a computation is defined only for

EE(LBS'S). Therefore, it is necessary to work with both the standard

and the modified interpreters. Two useful results relating the two

interpreters have already been derived: (1) For' the initial standard

state corresponding to Si, Si2ipSi-Qi, so in particular, the heap in

S'-2 is also U'. (2) There is a halted firing sequence Q4 starting in

S' which has 2 as a prefix such that Pi - (S',i2) is SOE-inclusive

of Ci.

The canonical computation ai - n(S!,Qi) is a prefix of P," Any

structure operation execution e - Ex(d,k) is initiated in w iff there

are k firings of d in 2 iff'e is initiated in a,. For every J, if there

is any entry Ent(e,j) in wi, there is one with the same value in P,' by

SOE-inclusion; since e is initiated in a,, that entry must be in ai.

Similarly, if e is initiated in a,, then for any Assign, Update, or Delete

execution A, eER(A) in a1 iff eER(A) in i iff eER(A) in w, (Le a 5.2-6).

Therefore, by equivalence of w and 02 e has the same non-pointer inputs

in a1 and a2, if it has a pointer input p in al, that pointer input in a2

-418-

is F(p), and eER(A) in a1 iff eER(A) in a2.

For NAR1 the node activation record derived from 2 and a1 , Ui is

the heap determined by ai from U, and NAR1 . For any particular pointer. p

and node n, (p,n)ETri-rni iff (p,n)(ran NARi iff there is a Copy execution

Ex(d,k) such that NARi(C) = (p,n), so that the k firing of d in 2,

is (d,(p,n)) iff there is an entry in wi with value p whose transfer has

source Src(C,J) for some j (Lemma 7.1-2). Since Src(C,J) has value p in

w1 iff it has value F(p) in &2 ' pEdom rI - dom fl i ff F(p)Edom rnl!-domn

Furthermore, letting CCi be the Creating-Copy function corresponding to

NAR, CC1(p) is defined and equal to C iff 3n: NAR1 (C) = (p,n) iff

Src(C,J) has value p in ol iff Src(C,J) has value F(p) in co2 iff 3i':

NAR2(C) - (F(p),n') iff CC2(F(p)) is defined and equal to C.

For any pointer p which is the value of a source s in 01,
p is

the value of s in p1 (by SOE-inclusion) and F(p) is the value of s in 02

(by equivalence); hence p is the value of s in P1 and F(p) is the value

of s in P2. If s - Src(S,l) for a Select execution S, S is in no reach

in P1 iff S is in no reach in ca1 (SOE-inclusion) iff S is in no reach in

Co2 (equivalence) iff S is in no reach in P2. These are sufficient to

prove that (p,Pl)P(F(p),P 2), whence pEdom r1 = F(p)Edom rl2

n 2 (O(p)) - 1I(17(p)), by Theorem 5.3-2. Thus, f(F(p)) - i(ril(p)) ,

whether or not p is in dom i1. Since I1 is one-to-one, and n1 , F, and

n 2 are all one-to-one, I is one-to-one.

Next it is proven that for any Assign, Update, or Delete execution A,

and any pointer p, duration D(A) extends to the end of H 1 iff D(A)
p

a2 a
extends to the end of HFP) Ent a(A,1)'is in H 1 if it has value p iff

-419-
a2

Ent (Al) has value F(p) iff Ent (Al) is in R Assuming for
a2a2 F(p),a

simplicity that A is an Assign execution, D(A) extends to the end of H p
p

iff either Ent(A.l) is the last input entry to an Assign execution in

H a ,_ or there is no such entry and CC (p) is defined and is in reach R(A)
p1

in a1. Ent(A,l) is the last input entry to an Assign execution in Hp
p

but not in H a2 there is an A' such that Ent(A',l) follows Ent(A,l) in
F(p)

HFp) =A'ER(A) in a2 m A'(R(A) in a1= since Ent(A',l) is in the sameF (p) sam

access history, it must follow Ent(A,l) in Hal, a contradiction. There
p

is no input entry to an Assign execution in H p, and CC1(p) is defined

and is in R(A) in a = there is no Assign input entry in H p2 and
F(p)

CC2 (F(p)) is defined and equal to CCI(P) - CC2 (F(p))ER(A) in a2. Similar

reasoning applies if A is an Update or Delete execution.

For any (pin)gfi, the content of ni in the heap determined by ai

from U and NARi (which is Uj) depends on the inputs to executions whose

durations extend to the end of H and on the content in Ui of a certain
Pi

node anI. The node mi, along with the pointer q1 to it, are given by: if

(PI,n)eli, then (q,,m1) - (pi,ni); otherwise, q, is the unique pointer

in dosn i such that pj - V(Ent ai(CCi(p),l)) is dynamically descended from

q in ai. The set CP containing each pointer p such that p is the value

of an input entry to a structure operation execution in a1 or CCY(p) is

defined is the set of pointers to nodes which are either accessed or

created by firings in 9 V If p1 is not in CP, then n, is not created in

2. so (pl,n)Efl, and F(pl) is not the input to a structure operation

execution in a2 and CC2(F(p)) is not defined, so letting P2 - F(Pl)'

(P2,n2)912. Since there is then no input entry to a structure operation

-420-

execution in H i and CC (pt) is not defined, no durations extend to the

end of Hi, so SMi(ni) - SMi(mi). Since (pi,ni)ffli, mi W ni, so
pi

SNI(ni) - SMi(ni).

For any pl(CP and P2 - F(pl), p1 is the value of an input entry to a

structure operation execution = p1 is the value of a source in col

(plPl)P(p2,P2). Then (pi,ni)yl (P 2 ,n 2)g 2 = qi , pi(qlpl)p(q2,p2). CCl(pl) is defined z (pl,nl)bl - (P2,n2)f 2

DDa (qi,pj) and p1 is the value of an input entry to a structure operation
i

execution in ai (namely CCi(pi)) -DD P(q,p') and (pj, p(p2,P 2) -

(qlplp(q 2 ,P 2) (by Theorem 5.3-2). Therefore, plECP - (ql, l)p(q2,P2).

Recalling the significance of the p relation, q, and q2 point to nodes

in the initial heaps U and U which have "equal" contents; i.e.,
1 2

SM2 (m2) - 11 (SMl(m)), so SM2 (m2) - I(SM (mi)).

For any plECP, the same executions' durations extend to the end of
a a

H 1 and H 2. If no Assign execution's duration extends to the ends ofPi P2

those access histories, then the value in SM'(nl) is the value in SM1 (m1)

which is the value in SM2(m2) which is the value in SM (n2). If there is

such an Assign execution A, then the value in SMI(n1) is V(Ent al(A,2))

which is V(Ent a2(A,2)) which is the value in SM2(n2). Therefore, SM (nl)

and SM2(n2) have the same value. Similarly, there is an ordered pair

with selector s in it in SM'(n 1) iff there is one in S 2 If no

Update execution's duration extends to the ends of H and H2, then forPl P2

any node n', (s,n')ESM,(n,) iff (s,n')ESM1 (m1) iff (s,1 (n'))ES 2 (m 2) iff

(s,I(n'))(SM2(n2). If Update execution U's duration extends to the ends

of those access histories, then for any pointer r, (s,n(r))ESM'(nl) iff

-421-

r = V(Ent a(U,3)) iff F(r) V(Ent a2(U,3)) iff (sj'(F(r)))ESM2(n2).

Therefore, since 2(F(r)) 1I(nj(r)), plECP = SM (n 2) - I(SM(nl)).

Finally, for any pointer p such that (p,R) or (p,W) is the value of

a token on any arc b in SI-2, b holds a token of value (F(p),R) or

(F(p),W) in S2 "92, and p is the value of an entry in ol= ($1,21), so

rT(F(p)) = I(ni(p)). For any pointer r such that n - ri!(r) equals or is

reachable from fl (p) in U1, rECP - SM2(r72(F(r))) = I(SMI(frl(r)))

SM(I(n)) - I(SMI(n)). If rtCP and for no node n' on the path from iij(p)

to n is the pointer to n' in CP, then none of those nodes is accessed or

created in the computation, so each of them has the same contents in U

and Ui. Since]l;(p) is not created, pEdom Il, and F(p)Edom fl2; hence,

there must be a pointer q on an arc b in S1 such that i(p) - fl1(p) equals

or is reachable from rl1 (q) in UI (Theorem 5.3-2)* Therefore, n equals or

is reachable from nl(4) inU, so SH2(l1 (n)) = lI(SMl(n)). Since

SMI(n) - SM,(n), sM=(I(n)) = I(sMI(n)).

If riCP but there are nodes on the path from fl'(p) to n the pointers

to which are in CP, there is a last such node n'; i.e., the pointer p' to

n' is in CP, but the pointers to all nodes after n' on the path to n are

not in CP. Letting n" be the node immediately following n' on that path,

there is a selector s such that (s,n")ESMI(n'). If p" is such that

fll(p") = n", there is an Update execution U with selector input s such

that D(U) extends to the end of HI p" - V(Ent a(U,3)) = p"ECP. Since

p"iCP, there is a pointer qEdom H1 such that (s,n")ESMI(I (q)). None of

the nodes on the path from n" to n is accessed, so their contents are

each the same in U and U' Since n is reachable from n" in U!, it is
i

reachable from n", hence from ITl(q), in U1 . As before, there is a

-422-

pointer q' on an arc b in S1 such that nI (q) equals or is reachable from

T1 (q') in U,, so n is reachable from nl(q') in U1 , sc

SM(I(n)) - I(SM(n).

In any case, then, for any node n equal to or reachable from f71(p)

for any p on an arc b in S' 219 SM(I(n)) - I(SM(n)). Since b holds a

pointer of value F(p) in S2*22 and (F(p)) I7I(p)),

U (F(p)) 1 U'.H(p); i.e., Match((b,Sl' 1). I, (b,S2 " 2)). Because

SIf'1 and s2.22 are modified states, completing the proof that they are

equal requires establishing the following condition: Letting the pool

component in Si'1 i be Qi' for every label S of a Select operator in P,

3PI: SEQI(p) e 3p 2: SEQ2 (p 2) u2.l2(p 2) 1 Ul' P(Pl)"
For any Select operator S, there are the same number k of firings of

S in Q1 and 2 2 and thus there is a prefix Oipi of 2 in which i is the

th
k firing of S. For any pointer pi, SEQi(pi) in Sig i iff S was placed

in that pool at the last firing (pi and remains there through to the end

of Qi iff there are no tokens on S's number-I output arcs at any point

after ei iff there is no entry in oi with source Src(Ex(S,k),l). There

is no entry with that source in wl iff there is no such entry in w2 (by

equivalence). Therefore, 3pl: S(Ql(pl) in Sl'R1 iff 3p2 : SEQ2(P2) in

52'2.

It has already been shown that if p1 appears as the value of an entry

in (1, then U2,.n (p2) 1 Ul.rI(Pl). If not, all that can be said is that

r1,(pi) is the si-successor of T(P(p) in Si'ei , where pj and a are the

pointer and selector inputs to 91. Letting 6i be n(S Il 1) the heap in

S-"i (which is the heap in Si*O1) is the heap determined from U. by .

If there is any Update execution whose duration extends to the end of

-423-
6

HpR, then p1 is the value of Ent 6(U,3); i.e., p1 is the value of an entry

in " Therefore, there is no Update execution U whose duration extends

to the end of Hp,. There is an entry f1 - Ent(Ex(S,k),l) with value pPP

which is in y1 - T(S','1cpi) but is not in 5i = r(S',e). D(U) extends to

the end of H i 1ff fEED(U) in y (Lemma 5.2-7) iff Ex(S,k)ER(U) in y iff

Ex(Sk)ER(U) in wi. Ex(S,k)ER(U) in coI iff Ex(S,k)ER(U) in o29 so there

is no Update execution whose duration extends to the end of history Hp52
p2 *

Therefore, there is a pair (qi,mi) in H1i such that (si,1 71(pi))

is in SMi(m1). Since si = V(Ent (Ex(S,k),2)), sI W s2 b, equivalence.

By a previous argument, SM2(m2) = II(SM1 (m1)), so r1(p 2) - I(FT(pl)).

Either ql = Pl or DD61 (ql,p); in any case, ql is the value of an entry

in wi' Since r1 (pl) is reachable from ml in at least UI, reasoning

similar to that given earlier for any node n equal to or reachable from

rl (p1) in U1 shows that SM'(I(n)) i (SMI(n)). Thus

U'.l (2) U 'p(p2). Since 3pl: SEQl(pl) 3P2: SEQ 2 (p2)

U2 , , (p2) S29 equals SI.Q 1,and P is functional.

Lemma 7.3-1 Let S be any initial modified state for an LS program P,

and let 2 be any halted firing sequence starting in S. Then for E the

equivalence class of initial states containing S, r)(S,g) is in JE and is

halted therein.

Proof:

(1) Let co - n(S,2). Then o is in J Lemma 4.3-3

(2) o is a prefix of co, and 2EFS(S), so co is in JE (1)+Def. 4.3-3

Prove that co is halted in JE by contradiction. Assume

-424-

(3) w is not halted in J

(4) There is another computation acJE of which w is a proper prefix

(3)+Def. 4.2-7

(5) a is a prefix of some PEJS,,S ,, where S'EE and 2' is a halted

firing sequence starting in S' (4)+Def. 4.3-3

(6) w is a proper prefix of P, which is a permutation of n(S',2')

(4)+(5)+Def. 4.3-5

(7) There is a prefix 0 of 2' whose reduction is 4)(w)(5)+(6)+Lemma 7.2-2

(8) () is the reduction of 2 (1)+Lemma 4.3-3

(9) e equals 2 (7)+(8)+Def. 2.4-5

(10) S' equals S (5)

(11) Since 2 is halted, no actor is enabled in S'2 Def. 2.3-1

(12) No actor is enabled in S'0 (lO)+(9)+(ll)+Cor. 7.1-2(12) Noac is ealled, so0 i n 'G (1)()(1'C .-

(13) 0 is halted, so 0 2' 'so equals 2 (12)+(7)+(9)+Def. 2.3-1

(14) For every prefix E'(p' of 2' in which (p' is the kth firing of an

actor d, there is a prefix ap of 2 in which p is the kth firing

of d and 9 equals E' (13)+Def. 2.4-5

(15) S'E equals S'"s' (16)+(10)+Thm. 7.1-2

(16) Every control arc in P has a true (false) token in S'E' iff it

has one in S'E (15)+Defs. 7.1-2+3.4-1

(17) There is an entry f in T(S',2') which is not in w - TI(S,Q). Let the

destination in T(f) be Dst(Ex(d,k),J) (6)

(18) dADL - d is the label of an actor in P z there is a prefix V'p' of

a' in which cp' is the kth firing of the actor labelled d, and a

token is removed from d's number-j input arc in going from S',''

to S"' F'spI Def. 4.3-2+Alg. 4.3-1

-425-

th(19) there is a prefix Ep of 2 in which p is the k firing of d, and

a token is removed from d's number-J input arc in going from

S'E to S'p (14)+(16)+Defs. 3.3-9+2.1-5

(20) - there is an entry g in co whose transfer has destination

Dst(Ex(dk) ,J) Alg. 4.3-1

(21) S'2 equals S''' (l0)+(13)+Thm. 7.1-2

(22) dEDL - there is an arc b, uniquely associated with d, which holds

a token in S''2', and k = 0 and j - 1 (17)+Alg. 4.3-1

(23) - b holds a token in S-2 (21)+Defs. 7.1-2+3.4-1

(24) - there is an entry g in w whose transfer has destination

Dst(Ex(d,k),J) (22)+Alg. 4.3-1

(25) There is an entry in co, hence in -(S',2'), whose transfer has the

same destination as T(f) (18)+(20)+(22)+(24)+(6)

(26) Since f is the only entry in rI(S',V') whose transfer has that

destination, that entry in c is f; i.e. f is in co (25)+Def. 4.2-6

Since (3) leads to a contradiction between (17) and (26), (3) is false;

i.e., c is halted in JAE

Theorem 7.3-1 For any LD program P, if the expansion of P from EE(LD ,M)

is determinate, then P running on the modified interpreter is functional.

Proof:

(1) Let SI and S2 be any two equal modified states for P, and let 21

and 2 2 be any two halted firing sequences starting in S and S2

respectively. Then P is functional iff S2 .22 equals S' 1,
2

Def. 2.4-4

(2) There is a single equivalence class E of initial modified states

-426-

for P that contains both S1 and S2 Cor. 2.4-1

(3) Let - '-(sII2) and w2 71(S2-22)" Then cI and w2 are both

halted in J (2)+Lemma 7.3-1

(4) Letting the expansion of P be (IntJ), JE is in J (2)+Def. 4.3-2

(5) w and are equivalent computations under a one-to-one pointer

correspondence F (3)+(4)+Def. 6.1-1

(6) The. sets of transfers of the entries in wI and w 2 are identical

(5)+Def. 6.1-1

(7) Every arc in P is either one of an ordered set of input arcs of an

actor in P or one of an ordered set of program output arcs of P

Def. 2.1-1

(8) For every arc b in P, denote by AD(b) the destination

Dst(Ex((d,j),O),l) if b is the number-j input arc of actor d

Dst(Ex(("OD",i),O),l) if b is the number-I program output arc (7)

(9) For every arc b in P, there is a token on b in S1"1 iff there is

an entry in co whose transfer has destination AD(b)

(8)+(3)+Alg. 4.3-1

(10) iff there is an entry in c2 whose transfer has destination AD(b) (6)

(11) iff there is a token on b in S (8)+(3)+Alg. 4.3-1

(12) Let f and g be two entries from cl and c2 respectively, with the

same transfer. Then V(f) is not a pointer iff V(g) is not a

pointer, if those values are not pointers, then they are the same,

and if those values are pointers, then F(V(f)) is defined and

equal to V(g) (5)+Def. 6.1-1

(13) For each arc b in P, there is a token on b with non-pointer value

v in S1"2 1 iff there is an entry in co with transfer t containing

1~

-427-

destination AD(b), and a non-pointer value v (8)+(3)+Alg. 4.3-1

(14) iff there is an entry in w2 with transfer t, containing destination

AD(b), and a non-pointer value v (6)+(12)

(15) iff there is a token on b with non-pointer value v in S2" 2

(8)+(3)+Alg. 4.3-1

(16) For every arc b in P, there is a token on b with value (p,R) or

(p,W), p a pointer, in S 21 iff there is an entry in w1 with

transfer t containing destination AD(b) and pointer value p

(8)+(3)+Alg. 4.3-1

(17) iff there is an entry in w 2 with transfer t, containing destination

AD(b), and pointer value F(p) (5)+(12)

(18) iff there is a token on b with value (F(p),R) or (F(p),W), p a

pointer, in $2*"2 (8)+(3)+Alg. 4.3-1

(19) Let Int - (St,I,IE). Then Int - Int(P), and dESt-DL iff d is the

label of an actor in P Def. 4.3-2

(20) Let e - Ex(d,k) be any execution in which dESt-DL. Then e is

initiated in o1 (W 2) iff there are In(/(d)) input entries to e in

CO (1G2) Def. 4.2-6

(21) e is initiated in i iff e is initiated in o)2 (20)+(6)+Def. 4.2-5

(22) For 1-,2, ;(ca) is the reduction of 9 and w is in J

(1)+(3)+Lemma 4.3-3

(23) ci is a prefix of a causal permutation of '(Si,2i) (22)+Def. 4.3-5

(24) For any actor d in P, there are k firings of d in 21 (or 22) iff

Ex(d,k) is initiated in w, (2) and Ex(d,k+l) is not initiated

(19)+(l)+(22)+(23)+Thm. 4.3-2

(25) There are the same number of firings of d in Si and 92 (24)+(21)

-428-

(26) If d is a gate, let j be such that d's control input arc is its

number-J input arc. Then the value of the token removed from that

arc by the kth firing of d in 2l (22) equals V(Ent(Ex(d,k),J)) in

(1 (02) (3)+Alg. 4.3-1

(27) Since that value is not a pointer, V(Ent(Ex(dk),J)) is the same

in co1 and w2' so the k
th firings of d in 21 and 22 remove control

tokens of the same value (26)+(12)+Def. 2.2-1

(28) For any two actors d and d' and for any k, there is a k' such that

the kth firing of d in 21 (22) removes a token from an output arc

of d' and exactly k' firings of d' precede it iff there is an

entry in (z1 (w2) with transfer (Src(Ex(d',k'),i),Dst(Ex(d,k),J)),

for some i and j depending on the arc (3)+Alg. 4.3-1

(29) There is a k' such that if the kth firings of d in 21 and 22 remove

tokens from output arcs of d', then those firings both are preceded

by exactly k' firings of d' (28)+(6)

(30) For any arc b in P which holds tokens of pointer value in Sf'21 and

$222' either both are read pointers or both are write pointers

(25)+(27)+(29)+Lemma 7.2-5

(31) b holds a token of value (p,R) ((p,W)), p a pointer, in S' 1*l iff b

holds a token of value (F(p),R) ((F(p),W)) in S2 *22 (16)+(18)+(30)

Letting the heap in Si be U- (Ni,1,Sm), 1-1,2, the major task

remaining is to prove that there is a single one-to-one mapping I: N - N2

such that, for every value (p,R) or (p,W), p a pointer, on an arc in

$1".21, U2.IT2(F(p)) I Ul.n'(p)"

(32) Let S1' and S1 be the initial standard states for P corresponding

to S1 and S2. Then, for i-1,2, is a firing sequence starting

seuec statin

V

-429-

in S and S'Si". (1)+Thm. 7.1-1

(33) U' is the heap in (32)+Def. 7.1-1

(34) For i=,2, there is a halted firing sequence 2 starting in S

which has 2 as a prefix such that p, - nI (s5,21) is SOE-inclusive

of (1)+(32)+(3)+Thm. 7.1-3

(35) ai - n(S!,2i) is a prefix of (34)+Alg. 4.3-1

(36) Ol' 02' a, %2' 1p and 02 are all causal computations for Int(P)

(l)+(3)+(32)+(34)+(35)+Lema 4.3-2

(37) For i-1,2, for any structure operation execution e - Ex(d,k) and

any J, there is an entry Ent(e,j) in ai iff d labels a structure

operation in P, there are k firings of d in 21, and the kth

removes a token from d's number-J input arc (35)+Alg. 4.3-1

(38) iff there is an entry Ent(e,j) in wi (3)+Def. 2.2-5+Alg. 4.3-1

(39) There is an entry f = Ent(e,j) in ai - there is exactly one entry

Ent(ej) in P,, and it has value V(f) (35)+(36)+Def. 4.2-6

(40) A there is an entry g - Ent(e,j) in w (37)+(38)

(41) there is an entry Ent(e,j) in p, with value V(g) (34)+Def. 5.2-8

(42) there is an entry Ent(e,j) in wi with value V(f) (39)

(43) For any structure operation execution e and any J, there is an entry

Ent(e,J) in a1 iff there is an entry Ent(e,j) in a2

(37)+(38)+(6)+Def. 4.2-6

(44) A V(Ent (e,j)) is not a pointer iff V(Ent (e,j)) is not a pointer,a1 a2

if those values are not pointers, then they are the same, and if

they are pointers, then V(Ent (e,j)) - F(V(Ent (e,j)))a2 a1
(39)+(42)+(12)

(45) For 1-1,2, for any structure operation execution e, e is initiated

-430-

in ai iff there are In(I(d)) input entries to e in ai iff there

are that many input entries to e in w, iff e is initiated in co

(37)+(38)+Def. 4.2-6

(46) For any pointer p, p is the value of the output entries in p, of a

Copy execution C = the first such entry in p, with value p is an

output entry of C (32)+(34)+Lea 5.2-3

(47) For any structure operation execution e initiated in a,, and any

Assign, Update, or Delete execution A, eER(A) in p, iff eER(A) in

ai only if A is initiated in a, (36)+(35)+(46)+Lemma 5.2-6

(48) A e is initiated in oi (45)

(49) m eER(A) in if f eER(A) in pi (36)+(34)+(46)+Iemma 5.2-6

(50) For any structure operation execution e initiated in both a1 and

a2, and any Assign, Update, or Delete'execution A, eER(A) in a1

iff e(R(A) in o), iff eER(A) in 2 iff eER(A) in a2

(47)+(49)+(5)+Def. 6.1-1

(51) For i=l,2, let the heap in S' be U1 - (N4, iSMi). Let NARi be the

node activation record derived from 2 and a1 . Then the heap in

Si.21i Uj, is the heap determined by ai from Ui and NAi

(32)+(35)+(33)+Thm. 5.2-1

(52) i S nj, and for all (p,n), (p,n)e - ni if (p,n)Eran NARi

(51)+Def. 5.2-7

(53) 1ff there is a Copy execution C such that NAR (C) - (pn) iff

C - Ex(d,k) where the kth firing of d in 2 is (d,(p,n))

(51)+Defs. 5.2-1+5.2-4

(54) iff there is an entry in co with value p whose transfer has source

Src(C,J) for some j (1)+Lemma 7.1-2

L ._

-431-

(55) For all pEdom fl' - dom 11l, p is the value of an entry in wl

(52)+(54)+(12)

(56) For every pointer p, p(dom III- dom 1 iff there is a Copy execution

C and an n such that NAR1 (C) = (pn) iff there is an entry in 1

whose transfer has source Src(C,J) for some j (52)+(53)+(54)

(57) iff there is an entry in w2 whose transfer has source Src(C,j) for

some Copy execution C and some J and whose value is F(p) (6)+(12)

(58) iff there is a Copy execution C and an n' such that NAR 2(C) is

(F(p) ,n') if f F(p)Edom D ' - dom r 2 (52)+(53)+(54)

(59) Let CCi be the Creating-Copy function corresponding to NARi. Then

for any pointer p and Copy execution C, CCI(p) is defined and equal

to C iff 3n: NARI(C) - (p,n) iff 3n': NAR2(C) - (F(p),n') iff

CC2 (F(p)) is defined and equal to C (56)+(58)+Def. 5.2-5

(60) For any pointer p, p appears as the value of an entry in c1

there is an entry in wl with value p whose transfer has a source s

i there is an entry in P1 with value p whose transfer has source s

(34)+Def. 5.2-8

(61) A F(p) is defined and there is an entry in co2 with value F(p) whose

transfer has source s (6)+(12)

(62) = there is an entry in P2 with value F(p) whose transfer has source

(34)+Def. 5.2-8

Prove by contradiction that for any pointer p which appears as the value

of an entry in c)1, (p,Pl)P(F(p),P2). Assume this is false; i.e., *1
(63) there is a prefix yf of w such that, for every pointer q which

appears as the value of an entry in y, (q,pl)p(F(q),p2), but for

p = V(f), (p,pl)h(F(p),B 2)

-432-

(64) f is the first entry in w with value p (63)

(65) Let e be the execution of which f is an output entry. Then there

is an entry in o)1 with value p whose transfer has source

s - Src(eJ) for some J (63)+Def. 4.2-5

(66) p is the value of source s in Pi, F(p) is defined, and F(p) is

the value of s in P2 (65)+(60)+(61)+(62)+Def. 4.2-6

(67) e either is in IE, is a Copy execution, or is a Select execution

which is in no reach in (36)+(64)+Lena 5.3-8

(68) e is initiated in y (63)+(65)+(36)+Def. 4.2-7

(69) e is initiated in ol, hence in w2 (45)+(6)+Def. 4.2-6

(70) eEIE (p, l)p(F(p), 2) (65)+(66)+Def. 5.1-10

(71) e is a Select execution which is in no reach in to - e is a Select

execution which is in no reach in w2 (5)+Def. 6.1-1

(72) - e is in no reach in Pi or 2 (69)+(36)+(34)+(46)+Lemma 5.2-6

(73) e is a Select execution - there is an Ent(e,l) and an Ent(e,2) in

, hence in w2' and the former's values are pointers, while the

latter's are not pointers (69)+(6)+Def. 4.2-6+Const. 5.1-1

(74) * there are entries Ent(e,l) and Ent(e,2) in P, and P2' and for

J-1,2, V(Ent P(e,j)) - V(Ent (ej)) (34)+Def. 5.2-8

(75) u V(EntPl(e,2)) - V(EntP2(e,2)) and V(EntP2(e,l)) F(V(EntPl(e,l)))

(12)

(76) A V(Ent l(e,l)) - V(Ent P(el)) is the value of an entry in y

(73)+(68)+Def. 4.2-6

(77) - (V(Ent P,(e,1)),Pl)p(V(EntP2 (e.1)),'P2) (63)+(75)

(78) e is a Select execution which is in no reach in co

(p,pl) p(F(p) '02) (66)+(71)+(72)+(73)+(75)+(77)+Def. 5.1-10

-433-

(79) e is a Copy execution (63)+(67)+(70)+(78)

(80) There is an entry Ent(e,l) in y of pointer value q

(68)+Def. 4.2-6+Const. 5.1-1

(81) (q,p1.)p(F(q),'P2), there are entries Ent(e,l) in P1 and P2'

V(Ent (e,l)) q and V(Ent (e,l)) -F(q)
P1 P

(80)+(63)+(6)+(12)+(34)+Def. 5.2-8

(82) DD (q,p) and DD (F(q),F(p)) (6+8)Df .-
P1 P2 (6+8)Df .-

(83) q 0 p (80)+(64)

(84) (p,p 1)p(F(q),) (83)+(82)+(81)+Def. 5.1-10

(85) (p'j31)P(F(p) ,P2) (83)+(82)+(85)+Def. 5.1-10

Since (63) leads to a contradiction with (85), (63) is false. I.e.,

(86) For every pointer p which is the value of an entry in cl

(87) For any pointer p, p is the value of an input entry to a structure

operation execution in a1 p is the value of an entry inco

(37) +(39)+(42)

(88) -F(p) is defined and (pp)(~)p)(12)+(86)

(89) S! and S' are equal initial standard states (l)+(32)+Thm. 7.1-2

(90) There is a single one-to-one mapping I *N -. N such that, for each
1 2

arc b in P, Match((b,S), Il,(,S) (51)+(89)+Def. 2.4-3

(91) Define a mapping I: N'I -i- N' by
1 2 y

1(n)- I I(n) if nEN1

fl2'(F(p)) if niN 1 and F(p) is defined

where p is such that flj(p) - n

(92) For all plfdom 1 and p2 dom Tp F(pl) and p1 is the value of

any entry in £1or any input entry to a structure operation

-434-

execution in a1 = [pjEdom 11 P P2 Edom f2 (56)+(58)

(93) - rI202) - I((P 1 M (87)+(88) (51)+(34)+(36)+Thm. 5.3-2

(94) A [P 1 dom n1 -lj (P l)N 1 (51)+Def. 2.2-1

(95) - i(p 2) = I(frl(pl))] - ni (p 2) - I(rf(pl)) (91)

Next prove that I is one-to-one

(96) Let n be any node in N1 . n(N1 there is a unique n' EN2 such that

n' - 11 (n) - I(n) (90)+(91)

(97) For i=1,2, NAR i is compatible with a,, and ran NAR, is consistent

with U (32)+(35)+(51)+Levma 5.2-2

(98) nbN1 3p: (p,n)911 - 1 . ran NAR 1 (51)+(52)+Def. 5.2-7

(99) there is a unique p such that fl,(p) - n A pEdom n' -" don 1
1 1
(97)+Def. 5.2-3

(100) F(p) is defined, is unique, and is in dom no - dom fl2 - ran NAR2

(55)+(5)+(56)+(58)+(57)

(101) there is a unique n' - r4(F(p)) - I(n)(97)+(91)+Defs. 5.2-3+5.2-7

(102) Let n1 and n2 be any two nodes in Ni. n1 is in N1 and n2 is not

I(n1) - 1(n1), which is in N2, and I(n2) - l(F(p)), where p

is such that 17(p) - n2 N11 (90)+(98)+(101)

(103) pEdom nI - dom nh F(p)(dom. fl - dorm r 2(51)+(56)+(58)+Def. 2.2-1

(104) (F(p),ri](F(p)))6fl - 2 = ran MAR 2 (51)+Def. 2.2-1

(105) l(n2) - fl(F(p)) is not in N2 (97)+(51)+(91)+Def. 5.2-3

(106) I(nI) - I(n2) either n1 and n2 are both in N1 or they are both

not in N1 (102)+(105)

(107) n1 and n2 are both in N1 * I(n2) - I(nI) iff 11 (n2) - 11(n1)

(91)+(90)

(108) nI and n2 are both not in N1 1(n2) - 1(n1) -

1 2 1 2 1

-435-

rIT(F(P 2)) - n (F(pl)) where, for i-1,2, Il(pi) - n -F(pl) -F(P 2)

(51)+Def. 2.2-1

(109) -P 2 n, = n2 (5)+(51)+Def. 2.2-1

(110) I is one-to-one (96)+(98)+(101)+(106)+(107)+(108)+(109)

Next prove that for any Assign, Update, or Delete execution A and for any

a
pointer p, duration D(A) extends to the end of H 1 iff D(A) extends to

p
the end of HF().

(111) Let A be any Assign execution. Then D(A) extends to the end of H 1
p

iff either
(lla) Ent (A,1) is the last number-I input entry to an Assign execution

a1

in that access history, or

'a
(l1b) there is no such entry in H 1 , and CC1 (p) is defined and is in

reach R(A) in a1 (97)+(51)+Def. 5.2-7

(112) For any structure operation execution e, e is initiated in a1 iff

e is initiated in oI iff e is initiated in o2 iff e is initiated

in a2 '(45)+(6)+Def. 4.2-6
a

(113) For any structure operation execution e, Ent (e,l) is in Ha iff
a1 p

its value is p and e is initiated in a1 Def. 5.1-4

(114) iff e is initiated in a2 and V(Ent a(e,l)) = F(p) (112)+(43)+(44)

(115) iff Ent (e,i) is in HF)2 Def. 5.1-4

(116) (ilia) iff Ent (A,1) is in H 1 and there is no Assign execution

A' such that Ent (A',I) follows Ent (A,I) in Hal with no inter-a1 a1 p

vening number-i input entry to an Assign execution iff Ent (A,I)
aa 1

is in H p and there is no Assign execution A' such that Ent (A',I)P a1

is in history Hal and is in D(A) in a Def. 5.1-5
p

-436-

a 1 a

that Ent a,(A',1) is in that history and A' is in R(A) in a1I

Def. 5.1-6

(118) if f Ent (A,1) is in H a2 and there is no Assign execution A'
a2 F(p) a

such that Ent (A',1) is in Ha and A' is in R(A) in a
CL2 F(p)2

(113)+(115)+(114)+(50)

(119) if f Ent (Al) is the last number-i input entry to an Assign
a2 aI

execution in H. (l) Defs. 5.1-.5+5.1-6

(120) For any pointer p, one of CC 1(p) or CC 2 (F(p)) is defined -both are

defined and are equal to the same Copy execution C (59)

(121) .for 1-1,2, NAR (C) is defined (59)+Def. 5.2-5

(122) -C is initiated in both a1 and a2 (51)+Def. 5.2-4

(123) -CC 1(p)ER(A) in a I1ff CC2(~)(()in cL2 (50)

(124) (111b) 1ff there is no number-i input entry to an Assign execution

in H a 2 (113)+(115)
F(p)

(125) and CC 2(F(p)) is defined and is in R(A) in a 2 (120)+(123)

(126) (lila) -A is initiated in a 1 (113)

(127) (111b) -A is initiated in a1I (36)+Lemma 5.3-8

aa

H 1 only if A is initiated in a1
p1

(111)+(116)+(119)+(124)+(125)+(126)+(127)+Def. 5.2-6

(129) Let U be any Update or Delete execution initiated in a 1. Then

V(Ent, (U,2)) - V(Enta (U,2)) (43)+(44)

Replacing "Assign execution A" with "Update or Delete execution U with

V(Ent(U,2)) - s" in (111) through (128) yields a proof of

(130) D(U) extends to the end of H1ifDU xed oteedo

-437-

only if U is initiated in a1 (129)

(131) For any pointer p, CC 1(P) is defined there is a Copy execution

C and a node n such that NAR I(C) -(p,n) =* there is an entry in

wwith value p (59)+(53)+(54)

(132) A (pn)Eran NAR 1 . n' - Hi1 (52)+Def. 5.2-1

(133) -F(p) is defined (12)

(134) A F(p) Edom n2 - dom r2(56)+(58)

(135) For any pointer p, p is the value of an input entry of a structure

operation execution in a1 = F(p) is the value of an entry in a2

(43)+(44)

(136) there is a prefix e of 2 2 such that a token of value F(p) is on

an arc in SI-e (34)+(35)+Alg. 4.3-1

(137) F(p) is in dom Hi in S10(32)+Def. 2.3-l+Thm. 2.2-1

(138) F(p) is in dom TT (33)+Def. 2.2-5

(139) Let CP be the set of pointers {pj pEdom W' and p is the value of

an input entry to a structure operation execution in a 1 or CC1l(p)

is defined}. For any pECP, F(p) is defined and is in dom 1

(87)+(88)+(1?31)+(134)+(135)+(138)

Now prove that for any p1ECP, SM(H7(F(p 1))) - I(SMj(Hj'(p 1)))

(140) Let P2be F(p1) and let ni be such that (pi,ni)Erli, i 11,2.. Let

(q~ be such that

If (Pi,ni)qIi, then (qMi - (piln i),

otherwise, (q .mi) is the unique pair in n such that, for

P1- V(Ent (CCi(p),l)), DD (ip,
i i ai

(139)+(32)+(5l)+(34)+(35)+Lemua 5.2-4

(141) (p1,n 1)ErI 1 CC 1(p1) is not defined A p1, q, p1 is the value

-438-

of an input entry to a structure operation execution in a1

(131)+(132)+(140)+(139)

(142) A (P2,n 2)T12 , q2 ' P2 (139)+(56)+(58)+(140)

(143) - (p 1 1) p(p2 2) - (q 1 1)p(q2 ,P2) (87)+(88)

(144) (p1 ,n) 1 v 1 (p2,n2)1 2 - DD (ql,p) and DD (q 2$p)1 a2

(139)+(56)+(58)+(140)

(145) - since dynamic descendancy depends only on the entries in a

computation, DD1 (ql,p') and DD2(q2,p) (35)+Def. 5.1-9

(146) (pl,n 1)P 1 and p1 is the value of an entry in al - CCI(P1) is

defined and Ent a(CC1 (P1),1) is in a1

(32)+(34)+(35)+(51)+(59)+Lemma 5.2-3

(147) CC1 (pl) is defined - NARI(CC1 (pl)) is defined - CCl(pl) is

initiated in a1 Defs. 5.2-5+5.2-4

(148) -* Ent (I(CC1(P1),l) is in a, Defs. 5.1-1+4.2-6

(149) (pl,n 1)# rT1 - P1, is the value of an input entry to a structure

operation execution in a 1 and CC1(Pl) is defined (139)+(146)-(148)

(150) -(plP 1)(F(pj),p 2) (87)+(88)

(151) A p2 - V(Ent 2(CC2(p2),1)) - F(V(Enta (CC1(pl),l))) - F(p)

(140)+(59)+(43)+(44)

(152) - (qlpl)p(q2,P2) (8 9)+(90)+(51)+(35)+(36)+(144)+(145)+Thm. 5.3-2

(153) (ql,p1)p(q 2,02) (141)+(143)+(149)+(152)

(154) SM2 (m2) 1(SMI(m 1))

(89)+(90)+(51)+(32)+(35)+(36)+(140)+(153)+Thm. 5.3-2

(155) There is an Assign execution A such that D(A) extends to the end of

R I - the valu. in SM,(n I) equals V(Ent (A.2)) (51)+Def. 5.2-7

.. a. 1

-439-

(156) A D(A) extends to the end of Hp2 A A is initiated in a (140)+(128)

(157) = the value in SM.q(n 1) equals V(Ent (A,2)) (43)+(44)

aa
(158) A the value in SM;(n 2) equals V(Ent 2 (A,2)) (51)+Def. 5.2-7

(159) There is no Assign execution whose duration extends to the end ofaL
HPi = the value in SM(n 1) equals the value in SM(m I)

(51)+(140)+Def. 5.2-7

(160) A there is no Assign execution whose duration extends to the end

of H 2 (140)+(128)
P2

(161) A the value in SMI(n,) equals the value in SM2 (m2) (154)+Def. 2.4-1

(162) A the value in SM(n 2) equals the value in SM2(m 2)

(51)+(140)+Def. 5.2-7

(163) The value in SM (n2) equals the value in SMj(n1)

(155)+(151)+(158)+(159)+(161)+(162)

(164) For any selector s, there is an Update or Delete execution U such
that V(Ent (U,2)) = s and D(U) extends to the end of Hal - there

a 1 p1
is an ordered pair with s in it in SM (n1) iff U is an Update

(51)+Def. 5.2-7

(165) A D(U) extends to the end of Ha2 A U is initiated in a2 (140)+(130)
P2

(166) V(Ent (U,2)) = s (43)+(44)a2

(167) there is an ordered pair with s in it in SM2(n2) iff U is an

Update (51)+Def. 5.2-7

(168) = there is an ordered pair with s in it in SM'(n 2) iff there is an

ordered pair with s in it in SM;(n1) (164)

(169) For any selector s, there is an ordered pair with s in it in

SM (m1) iff there is an ordered pair with s in it in SM 2(m2)

(154)+Def. 2.4-1

........ - .: M ,b: .. ,--

-440-

(170) For any selector s, there is no Update or Delete execution U such
a1

that V(Ent (U,2)) - s and D(U) extends to the end of H 1 there
a1 P1

is an ordered pair with s in it in SM'(n) iff the same ordered
11

pair is in SMI(m1) (51)+(140)+Def. 5.2-7

(171) A there is no Update or Delete execution U such that V(Ent 2(U,2))

is s and D(U) extends to the end of Ha2 (130)+(43)+(44)
P2

(172) = there is an ordered pair with s in it in SM'(n iff the same

ordered pair is in SM2 (m2) (51)+(140)+Def. 5.2-7

2 22(173) =, there is an ordered pair with a in it in SM;(n 2) iff there is an

ordered pair with s in it in SM'(n 1) - (170)+(169)

(174) For every selector s, there is an ordered pair with a in it in

SM'(n) iff there is an ordered pair with s in it in SM'(n)
2 2 1 1

(164)+(168)+(170)+(173)

(175) Let s be any selector such that there is a pair (sfnj(rl)) in

SM (n). Then there is a pair (s,ry'(r 2)) in SM'(n 2) (174)

(176) For 1-1,2, n](rt)EN', so r Edom li (32)+(33)+Thm. 2.2-1

(177) Either there is an Update execution U such that D(U) extends to

the ends of Ha1 and H 2 and U is initiated in a1, or (sJ1,(r1))

sp

2

is in SM (m) (175)+(164)+(165)+(170)+(172)

(178) There is an Update execution U such that D(U) extends to the ends

of both HGl and Ha 2 and U is initiated in ai - r, - V(Ent (U,3))
P1 P 2 a1

(51)+Def. 5.2-7

(179) r 2 - F(r1) (43)+(44)

(180) i rT(r 2) - I(n(rl)) (176)+(92)+(95)

(181) (s,n(r))fSmi(mi) nr2(r 2) I 1 (rI{(rl)) (154)+Def. 2.4-1

(182) A fTl(r)ENt (51)+Def. 2.2-1

-441-

(183) n ;'(r 2) = I(li(r 1)) (91)

(184) For any selector s, there is a pair (s,1(r 2)) in SM'(n2) iff there

is a pair (s,171(r1)) in SM (n1) and fT(r 2) = IMl(r 1))

(174)+(175)+(177)+(178)+(180)+(181)+(183)

(185) For every pointer p(CP, SMHO(F(p))) - I(SNI(i' (p))), so

SM2(I(17 (p))) - I(SMI((p)))(163)+(184)+(140)+(92)+(95)+Def. 2.4-1

(186) Let p1 be any pointer in dora 1i but not in CP and let n, be HI(1 "

Let n2 be 1(n1), and let p2 be such that 1l(p 2) - n2 . P2 is the

value of an input entry to a structure operation execution in a2

P = F(p') where p' is the value of an input entry to a

structure operation execution in a (43)+(44)

(187) = r(p 2) = I(171(p')) (92)+(95)

(188) - since I and Wl are one-to-one, p1 p', which is in CP
i

(110)+(186)+(139)+Def. 2.2-1

(189) CC2(P2)",%s defined = CCl(p') is defined, where P2 - F(p') (59)

(190) - (p',n!(p'))rI - n1 (131)+(132)

(191) /Til(p')IN1 (51)+Def. 2.2-1

(192) I(nj(p')) - r1(p 2) - n2 (91)+(139)+(186)

(193) , p' - p1 * CCI(p1) is defined = PlECP (110)+(186)+(139)+Def. 2.2-1

(194) P2 is not the value of an input entry to a structure operation

execution in a2 and CC2(P2) is not defined (186)+(188)+(189)+(193)

(195) For i-1,2, there is no Assign, Update, or Delete execution A such

that Ent (A,l) has value pi, and CCi(pi) is not defined
ai

(186)+(194)+(139)

(196) No Assign, Update, or Delete firing in 2 has pi as a number-1

pointer input (195)+Alg. 4.3-1

-442-

(197) (P 1 ,ni)T1i' - rii - 3C: NARi(C) - (pi,ni) CCi(pi) is defined

(52)+(53)+Def. 5.2-5

(198) (Plnl)9rri (197)+(195)

(199) SMI(ni) m SMti(n t) (198)+(196)+Defs. 3.3-9+2.2-5

(200) Let p be any pointer which appears as the value of an entry in &0.,

and let r be any pointer in doa ql' which is not in CP such that

II(r) is reachable in U' from a node a which is either flj(p) or a

successor in U1 of ni(p). Prove that SM'(I(rl(r))) - I(SML(nl(r)))

(201) There is a path from a to fi(r) in U!, i.e., a sequence of nodes

ni, n2, ... nn, with m - n1 , H(r) - nk, and for 1=1,...,k-l,

ni+1 is a successor of ni; that is, there is an ordered pair

(s,ni+I) is SMitn) (200)+Def. 2.2-2

(202) Let j be such that, for i-j,...,k, n 1-1(ni) is not in CP. Then

for i-J,...,k, '(n) - SMI(ni) (186)+(199)

(203) There is a path from nj to nk in U1 (51)+(201)+(202)+Def. 2.2-2

(204) F(p) is defined and (pp31)p(F(p),P 2) (200)+(16)+(87)+(88)

(205) j - 1 A pjCP - there is a path from a to fi(r) in U1 - there is

a path from nfl(p) to fil(r) in U1 (202)+(203)+(201)+(200)

(206) A p(dom 111 and P(p)Edom l2 (186)+(198)

(207) - there is an arc of P which holds a pointer q! in S' such that

nI(p) equals otis reachable from n (q) in U1

(89)+(90)+(51)+(32)+(35)+(36)+(204)+Thm. 5.3-2

(208) - a - n equals or is reachable from nl1 (q) in U1

(201)+(200)+Def. 2.2-2

(209) j > 1 v pECP - letting p and Pj-I be such that nj - fl'(p) and,

if J - 1, PJ- 1 p, else nj_ 1 -7l(p J - 1) ' pJ-1 is in CP, so either

-443-

there is an Update execution U such that V(Ent a(U,3)) pi, or

there are two pointers q1Edom 111 and q 2Edom 112 such that (s~n i) is

in SM 1011 (ql)) and (,P~~ '2

(200) +(201)+(175)+(177) +(178) +(202) +(140) +(153)

(210) =*since p i CP, it is not the value of Ent a(U,3), so there are two

pointers q 1Edom IT 1 and q 2Edomfl2 such that (s,n i)(SM 1 (nl1(ql)) and

(qlpl)p(q 2 P2) (202)+(139)

(211) =*there is a q' on an arc in 1 suhtat n1 (ql) equals or is

reachable from n 1 (q!) in U 1 (89)+(90)+(51)+(32)+(35)+(36)+Thm. 5.3-2

(212) =*nj is a successor of 11(ql) in U1, so nj is reachable from

I1 (q,') in U 1 (210)+Def. 2.2-2

(213) There is a pointer qj on an arc b in S' such that nl is reachable

from f 1 (qj) in U1(205)+(208)+(209)+(212)

(214) n.k is reachable from fl1 (q,') in U1 (213)+(203)+Def. 2.2-2

(25 k 1 1(r - 1(r), so nk is in 1, (201)+(200)+(186)+(198)

(216) For q2' the pointer on b in S ' U.I 2(q2) -4U 1J11 (qj')(90)+Def. 2.4-2

(217) S 2 (1 1 0f1 (0)) 1 (SM 1(n 1 (r))) (214)+(215)+(216)+Def. 2.4-1

(218) SM2(I(7j(r))) -I(SMI(O1I(r))) (200)+(186)+(199)+(215)+(91)

(219) Let p be any pointer such that there is a token of value (p,R) or

(p,W) on an arc b in S f 2 . Then p appears as the value of an

entry in cwl, and a token of value (F(p),R) or (F(p),W) is on b

in S2*22 (16)+(19)

(220) flj(F(p)) - I10l1(p)) (219)+(92)+(95)

(221) Let n be any node which equals or is reachable from flI(P) in U'.

Let q be such that nI'(q) -n. Then qECP - SM2(I(n)) - I(SMI(n))

-444-

(185)

(222) qtCP -SMi'(I(n)) - I(SM'(n)) (219)+(200)+(218)

(223) S14'(I(n)) - I(SH'(n)) (221)+(222)

(224) U '.fl(F(p)) i 1 1 lP (220)+(221)+(223)+Def. 2.4-1

(225) There is a one-to-one mapping I under which for each arc b in P,

Match((b, S1 '21). 1. (b,S 2 * a2))

(9)+(l1)+(13)+(15)+(31)4-ll)+(219)+(224)+Def. 3.4-1

Finally, it is necessary to prove that, letting the pooi components of

S *2Q and S *22be Q1and Q 'for every label S of a Select operator,

3pl: sEQ (9) es 3p2 : SEQ2(p) noU' '(p 2) 1 11n,(p1.)

(226) There are the same number k of firings of S in 9 1 and 2 2 (24)+(25)

(227) Ex(S,k) is initiated in both co, and w(226)+(24)

(228) For 1-1,2, let 0 1 P be the prefix of 2 1 in which (pi is the last

(k th) firing of S. Then S is enabled in Si0 6i Def. 2.3-1

(229) In S,*%,, S is in no pooi, and there are no tokens on its output

arcs (228)+Defs. 3.3-6+2.1-4

(230) 3p i: SEQ i(P i) in S* -for all prefixes E of 2 1 longer than9.

S(~i)in S~ *2 E (228)+Def. 3.3-9

(231) - there is no prefix A ~,of 2 1 containing exactly k firings of S

such that tokens appear on the number-i output arcs of the actor

labelled S in the transition from S i .A to S:.Y Def. 3.3-9

(232) -there is no entry in coiwhose transfer has source Src(Ex(S,k),l)

(19)+Leum 4.3-1

(233) - there id no token on a number-l output arc of S in Si.2i and

there is no prefix R P longer than 0 Pin which 0"removes a

-445-

token from such an arc (228)+(226)+Alg. 4.3-1

(234) =*there is no prefix A p D of 2, containing exactly k firings of S

such that tokens appear on the number-i output arcs of S in the

transition from Si. A to S*,e (229)

(235) 3pi: SEQi(ii) inS i*Q there is no entry in w whose transfer has

source Src(Ex(S,k) ,l) (230)+(232)+(234)+(231)

(236) There is no entry in co1whose transfer has source Src(Ex(S,k),1)

iff there is no such entry in w 2 (6)

(237) 3p 1: SEQ 1(p 1) in S12Iif f 3p 2: SEQ 2(p2) in S *22(235)+(236)

(238) For i=1,2, SEQ 1(pi) in S i* 2,= SEQ 1(p i) in S* ((230)

(239) -SEQ i(p 1) in Fire(S i.OVIS) Def. 3.-

(240) -letting S * 0 be (ri$U';,Q"), there are tokens of value p~ on

S's number-i output arcs in Standard ((Strip(r1,S),U"),S)Def. 3.3-9

(241) -letting U" be (N",nI" SM"1), the pair (sil 'IV(p1) is. in SWV'(f'p)
i 1 1' 1

where pj and sare the values of the tokens on S's pointer and

selector input arcs, respectively, in Strip(ri'S) Defs. 3.3-7+2.2-5

(242) -(sil n'f(Pi)EsM1I'1(pp)) where p~ and sare the values of the

tokens on S's pointer and selector input arcs in ri which are

removed by pi(228)+Def. 3.3-8

(243) -(sip 101(p M)SM'(IN(pi)) where pl - V(Ent(, (Ex(s,k),1)) and

si MV(Ent W (Ex(S,k),2)) ~ - W82 (12)+Alg. 4.3-1

(244) e is a firing sequence starting in Sj and 10W',

(32)+Thm. 7.1-1

(245) U" is the heap in Sj01 (240)+(244)+Def. 7.1-1
i

(246) Let Ybe TI(S',O~ and let NARI be the node activation record

derived from 0 and y1 Then U" is the heap determined by Y from
i 'i i

-446-

U and NAR,' (32)+(244)+(245)+Thm. 5.2-1

(247) Let 81 be r(Sjepi). Then 8i is a causal prefix of coi

(228)+Lemma 4.3-2+Alg. 4.3-1

(248) SEQ (p1) in t t* f, M Ent6 (Ex(Sk),l) is in 6 but not in Y
151 1

and has value p (238)+(243)+(228)+Alg. 4.3-1

(249) - for any Update execution U, [(D(U) extends to the end of H and

V(Enty (U,2)) - si iff f1 ED(U) in 8 and V(Ent6 i(U,2)) - si

(228)+Lemma 5.2-7

(250) iff Ex(S,k)ER(U) in 6 (243)+Def. 5.1-8

(251) iff Ex(S,k)ER(U) in (o] (2 47)+(36)+(32)+(34)+Leua 5.2-3+Lemma 5.2-6

(252) - D(U) extends to the end of H f and V(Enty (U,2)) - s iff

Ex(S,k)ER(U) in w and V(Ent , (U,2)) - sl iff Ex(S,k)ER(U) in 2
1 Y2

and V(Ent O2(U,2)) - s2 iff D(U) extends to the end of Hp* and

V(Ent 2(U,2)) - s2 (247)+(12)+(243)+Def. 6.1-1

(253) -[D(U) extends to the end of HRpj and V(Ent Y(U,2)) - si

P- M V(EntT (U,3)) (243)+(246)+Def. 5.2-7

(254) p1 is the value of an entry in &1 and P2 - F(pl) (12)

(255) -U.l(p 2) u1lI(pl)] (219)-(224)

(256) A [NA: D(U) extends to the end of H , and V(Ent (U,2)) - a,
TPl 81

NU: D(U) extends to the end of Hp, and V(Ent 2(U,2)) - a2

letting n1 be such that (p in)l1, and defining (q1 ,m1) by

if (p ,n)6i , then (qtm 1) - (pj,),

otherwise, (qi,m1) is the unique pair in rl1 such that

V(Ent (CC (p),l)) is dynamically descended from q1 in Y,

(s1,fnl(p))IMjMi) (243)+(246)+Def. 5.2-7

-447-

(257) by the same reasoning as (140)-(154), since pjECP,

SM 2(m 2) - 1 1(S 1 (m 1)) (243)+(37)+(38)+(39)+(42)+(139)

(258) - IT (P2) - I'rI(pl)) (91)+Def. 2.4-1

(259) A q, appears as the value of an entry in I'land nTJ(P1) is a

successor of II'(ql) in U 1 (243)+(256)+Defs. 5.1-9+2.2-2

(260) -for any node n reachable from Fl1'(pl) in U', letting r be such

that l(r) -n, rECP - SM2'(I(n)) - I(SMI(n)) (185)

(261) A rjCP 5M2(I(n)) =I(SMI(n))] (200)+(218)

(262) SEQ i(pi) in Si. U TJ.fl(p2) 1 Ul9f1l(pl)

(248)+(253)+(255)+(256)+(258)+(260)+(261)+Def. 2.4-1

(263) S 2 2 2 equals S *2 1 (225)+(237)+(262)+Def. 7.1-2

(264) P is functional (1)+(263)

Q.E.D.

-448-

Chapter 8

Summaary and Conclusions

This final chapter consists of four sections. The first recapitulates

the goals of the thesis, summarizes the steps taken toward achieving them,

and exhibits the ultimate results. Section 8.2 evaluates these results to

see how well the goals have been met. Section 8.3 presents suggestions

for further research (including several already undertaken by the author).

Section 8.4 completes the thesis with a brief set of conclusions about

the significance of the work which it reports.

8.1 Susmmary

The primary goal of the thesis is to develop a language L.D and an

interpreter for it, together with a translation algorithm which takes any

well-behaved LBV program P into an LD program which is equivalent to P

and maximally concurrent. The secondary goal is to render the results in

as general a- form as possible, so that they may more easily be applied to

models of concurrent computation other than data flow.

LB'the data-flow language with structures as storage, offers the

prospect of maximal concurrency, but runs afoul of the problem of non-

functionality: Every LB program P is functional, so any program equiva-

lent to P must also be functional (precise definitions of functionality

and equivalence are given in Section 2.4). A simple translation of P

into 1BS yields a program P' which, on the standard interpreter, may havef

more concurrency than P, but also may be non-functional. The solution

-449-

pursued here is to retain the structure-as-storage operations, but modify

the interpreter so that at least a subset L of L (which includes P')
D BS

is functional.

It is argued in Section 3.1 that the only practical way to guarantee

functionality is to guarantee freedom from conflict. A program P is

conflict-free iff the following is true for every initial state S for P

and any two structure operators d1 and d2 in P: If there is a firing

sequence 2 starting in S in which the ith firing of d1 potentially inter-

thferes with the j firing of d2 (Table 3.1-1), which it follows, then those

th thfirings are sequenced by S; i.e., the i firing of d follows the j

firing of d2 in every ffring sequence starting in S. Freedom from conflict

actually implies a much stronger condition: determinacy. A program is

determinate if all halted firing sequences starting in equal initial states

not only produce equal final states, but do so "in the same way". The

first major contribution of the thesis is a "scheme", the combination of

a restriction on LBS programs and a modification of the interpreter, which

eliminates conflict and so guarantees determinacy, hence functionality.

The scheme distinguishes between pairs of potentially-interfering

firings in 2 on the basis of whether the two firings are in the same or

in different blocking groups (a blocking group is the set of firings in 2

all of which receive their primary pointer inputs from the same program

input or Copy or Select firing). In the case of two such firings in the

same blocking group, it is assumed that a simple analysis of the program P

will reveal whether those firings are sequenced by all initial states of P.

It is further assumed that, if necessary, P can be re-written (by

inserting sequencers) so that it satisfies the Determinacy Condition, which

-450-

is: For any initial state S of P and structure operators d and d in P,
1 2
th

if there is a firing sequence starting in S in which the i firing of dI

and the jth firing of d2 potentially interfere and are in the same blocking

group, then those firings are sequenced by S. The validity of these

assumptions, i.e., the ease of testing and re-writing P, is evaluated later

(Section 8.2.1.3). The only immediate concern is for those LBS programs

produced by the translation from LV; it is proven that these do satisfy

the Determinacy Condition.

Sequencing a pair of firings in different blocking groups is accomp-

lished by two modifications of the standard interpreter. The first

replaces simple pointers with read and write pointers as the values of

tokens. The only non-pI-output arcs on which write pointers can appear

are the number-1 output arcs of Copy operators. A requirement that every

firing of a write-class operator (Assign, Update, or Delete) has a write

pointer as its primary input is met by another, simple restriction on

programs, the Read-Only Condition. The second, key modification of the

interpreter causes it to withhold tokens of read-pointer value (p,R) from

the output arcs of a Select operator so long as any arc holds a token of

write-pointer value (p,W). The subset of LS consisting of those programs

satisfying both the Determinacy and Read-Only Conditions is the language

LD sought. The standard interpreter with the above two changes is the

desired modified interpreter, on which all LD programs are functional.

Section 3.4 completes the achievement of the primary goal by present-

ing an algartthm to translate any %V program P into an LBS program P'.

P' is in L, and if every LD program is functional (and P is well-behaved),

then P' is equivalent to P (Theorem 3.4-3).

-451-

The secondary goal of the thesis is that the proof of LDs function-

ality should be as general as possible, to make it applicable to other

models of concurrent computation which, like LBS' incorporate the

structure-as-storage operations. To this end, the entry-execution model

is introduced (in Chapter 4). This model focuses just on the definitions

of operations, including how their input-output behaviors may depend on

the order in which they are executed; details of concurrent-control and

local-memory structure are abstracted away. The general form of an entry-

execution model is presented in Section 4.2; Section 4.3 exhibits an

algorithm for constructing the model EE(L,I) from any data-flow language

L and interpreter I. Section 5.1 develops the Structure-as-Storage (S-S)

entry-execution model, to illustrate the technique of defining a set of

interacting operations by constraints on computations; the proof that the

model of LS on the standard interpreter is an S-S model verifies that

the operations defined are the structure operations in LBS.

Chapter 6 first defines determinacy in entry-execution terms, specif-

ically, a determinate expansion. It then presents a set of axioms on an

expansion which are sufficient to guarantee its determinacy (Theorem 6.4-1).

Chapter 7 proves that the model of L on the modified interpreter,
D

EE(,M), is an S-S model (Theorem 7.1-4) in which every expansion

satisfies the axioms (Lemma 7.2-1, Theorems 7.2-1, 7.2-3, and 7.2-5).

It also proves that if the expansion of program P from EE(LDM) is deter-

minate, then P is functional (Theorem 7.3-1). These lead to the following

ultimate results:

IA im.......

-452-

Theorem 8.1-1 Every LD program running on the modified interpreter is

functional.

Proof: Theorem 7.1-4, Lotma 7.2-1, Theorem* 7.2-1. 7.2-3, 7.2-5, 6.4-1,

and 7.3-1.

Corollary 8.1-1 For any well-behaved LBV program P. the program produced

from P by Algorithm 3.4-1 is equivalent to P.

Proof: Theorems 8.1-1 and 3.4-3.

Q.E.D.

This certifies that the first part of the primary goal has been met. The

next section evaluates (among other things) progress toward both the other

part of thin goal (maximal concurrency) and the secondary goal of general

applicability of the results.

8.2 Evaluation

This section evaluates the two major contributions of the thesis:

(1) the scheme for guaranteeing determinacy anti (2) the ontry-execution

model. The major issue regarding the scheme t whether or not it yields

the greatest possible concurrency possible in each program. The simple

answer is: No; a more meaningful reply is developed below in the form of

a crude cost-beoefit analysts, which takes into account implementation

considerations. The evaluation of the model is necessarily subjective.

The true test of its worth would be a measure of how much the results

expressed in its terms can simplify proofs about other concurrent-

computation systems with data structures; as yet, no such proofs have

been undertaken.

-453-

8.2.1 The Scheme

Each of the two parts of the scheme for guaranteeing determinacy

incurs a separate cost: Any physical implementation of the standard data-

f low interpreter (Section 8.2.1.1 below) must have additional hardware

to withhold Select outputs (Section 8.2.1.2) ; then an arbitrary L BS program

must be tested to see if it satisfies the Determinacy and Read-Only

Conditions (Section 8.2.1.3). The benefit of the scheme is that it

provides the maximum concurrency possible without a far more extensive

and costly hardware modification (Section 8.2.1.4).

8.2.1.1 A Data-Flow Processor

A physical implementation of a data-flow interpreter is a data-flow

processor. Estimating the added hardware required in the modified data-

flow processor necessitates first understanding the envisioned form and

function of the standard processor, the four major components of which

are diagrammed in Figure 8.2-1 [14].

The Data-Flow Control Unit (DFCU) stores the configuration component

of the interpreter state and recognizes enabled actors. It consists of

a number of homogeneous, autonomous instruction cells, each of which

stores all the information about one actor d:

1. a code for the function associated with d,

2. for each input arc of d, a flag, indicating whether there is a token

on that arc, and if so, the value of that token, and

3. for each output arc of d, a destination tag, which

a. identifies that arc as a particular input arc of a particular

other actor, and

-454-

I.
100

P-4-

IU
OH o V4

FO

Ia 4 ma-

-455-

b. indicates whether it is a number-i or number-2 output arc of d.

Logic within the cell recognizes when d is enabled, i.e., has tokens on

the requisite set of input arcs. Whenever this happens, the contents of

the cell are bundled into an operation packet, which is transmitted

serially through one of several output ports of the DFCU.

All function evaluation is done by the complement of functional units

(M's). There are several distinct types of EU's, and there may be several

of each type available on any processor. The different types may include,

e.g., an integer arithmetic unit, a floating-point arithmetic unit, and

assorted input/output controllers. The number of each type is dictated

by economics, with processing power distributed according to demand.

Function codes (as well as data) are meaningless to the DFCU; no

internal discrimination is made among actors having different codes. Thus

the type of FU needed to evaluate a packet emerging from a DFCU output port

is totally unpredictable. One role of the Arbitration Network (AN) is to

sort the stream of operation packets at each port into the proper EU types,

based on a partial decoding of function codes. Since there may be fewer

EU's of a given type than there are DFCU output ports, simultaneous

demands for the same EU can arise; arbitration of these demands is the

second purpose of the AN.

When an FU receives an operation packet, it executes the indicated

function on the ordered set of input values contained in the packet,

producing result packets. Each result packet consists of a copy of a

result of that execution, paired with one of the destination tags from the

received operation packet. Result packets enter the Distribution Network

(DN), where they are sorted and directed into the proper one of several

-456-

input ports of the DFCU. The destination tag in each result packet selects

one input arc of one actor; upon entering the DFCU, the result is stored

in the proper location of the instruction cell for that actor, where it

sets the flag indicating the arrival of a new token.

The Structure Memory (SM) is one type of FU, which executes Just the

eight structure operations. The issues of how the SM stores a heap and

performs operations on it need not be addressed here. One aspect of the

SM functioning, however, is essential to explaining the modifications to

be made: storage reclamation. Contrary to the simplifying assumption made

in the thesis, the sets of nodes and pointers implemented in any physical

processor are finite. To postpone saturation of the SM for as long as

possible, the storage occupied by the content of a node n will be

reclaimed, as will the pointer p to n, whenever n becomes inaccessible.

A node becomes inaccessible whenever there is no pointer to it, or to any

node from which it is reachable, on an arc in the configuration. Once n

becomes inaccessible, p can never again appear on an arc, and so no more

operations can ever be performed on n's content. In this case, there is

no need to retain that content, so the storage it occupies is reclaimed

for use in storing the contents of accessible nodes; similarly, p is made

available to point to any new node activated by a subsequent Copy firing.

Of the two principal techniques for detecting inaccessible nodes, the

one most easily implemented in hardware is reference counting: For each

node n in the SM, there is one reference count (non-negative integer)

associated with n and another associated with the pointer p to n. The

structure reference count, SRC(n), is the number of nodes of which n is

a successor; the execution reference count, ERC(p), is the number of tokens

• iiige.,"

-457-

with value p in the configuration. Whenever ERC(p) = SRC(n) - 0, there

is no pointer to n on any arc and there is no node from which n is reach-

able; therefore, n is certainly inaccessible.

At any particular time, there will be only a relatively few non-zero

execution reference counts. This argues for storing only these non-zero

counts, in what must be an associative memory. This ERC Memory (ERCM) will

store associations of pointers with positive integers (keyed on the

pointers). The following algorithm correctly maintains the ERCM contents:

Whenever an operation packet containing a pointer p leaves the DFCU, find

the value associated with p in the ERCM and decrement it by one; if it

goes to zero, delete the association. Whenever a result packet with

value p leaves the SM, look for an associated ERC(p); if one is found,

increment it by one, otherwise add an association pairing p with an ERC

of one.

8.2.1.2 The Processor Modifications

Assuming that the above mechanism for maintaining execution reference

counts is already available in a standard data-flow processor (as is most

likely [1,31]), the necessary modifications are simple: Each pointer

value p transmitted outside the SM (through the DN, DFCU, and AN) must be

replaced by one of (p,R) or (p,W), either of which is one bit longer than

p. The SM must append the correct value of that bit to each result packet

generated by the execution of a Copy or Select operator; this value

depends on which operation was executed and on whether the destination tag

in that packet indicates a number-1 or a number-2 output arc of the

operator. Two execution reference counts, ERCR(p) and ERCW(p), must be

R.

-458-

kept for each pointer p; these are the numbers of tokens with value (p,R)

and (p,W), respectively, on arcs of the configuration. The node n to which

p points is inaccessible only when ERCR(p) - ERCw(p) - SRC(n) - 0.

Implementation of the withholding of Select outputs follows the

formal specification quite closely: Before result packets with value (p,R)

generated by a Select execution leave the SM, look for a non-zero value of

ERC(p). If none is found, release those packets into the DN. If ERC.(p)

is greater than zero, divert those packets into a separate associative

memory, the Pool Memory (PM). Whenever ERCW(p) is decremented to zero

(as the last operation packet with value (p,W) leaves the DFCU), find all

result packets with value (p,R) in the PM and release them into the DN.

The formal specification of the modified interpreter (Section 3.3.1)

utilizes a two-step state transition, which was claimed to most accurately

model the simplest implementation. The basis for this can now be seen:

As noted, the only difference between a two-step and a one-step transition

arises in the case of a Select firing which inputs the last token of value

(p,W) and outputs tokens of value (p,R). In the above implementation,

ERCW(p) will be reduced to zero as the SM starts executing the Select

operation, before the result values are known. By the time result (p,R)

is produced, ERnC(p) will be zero, so the result packets will not be

withheld. This is Just the behavior implied by the two-step transition.

Current trends in technology suggest that the cost of hardware to

implement the logic to withhold Select outputs will be far exceeded by

that of the additional memory required. Under this assumption, the cost

of modifying a standard data-flow processor in accordance with the scheme

for guaranteeing determinacy is composed of the following item:

LI

I
-459-

1. The size of the ERCM must be increased to accomodate separate counts

for read and write pointers. For each pointer p with any non-zero

reference count, both p and the count must be stored in this assoc-

iative memory. Since the length (in bits) of p is probably greater

than that of a reference count, it is most efficient to store just

one association, of p with the pair (ERCR(p), ERCW(p)). Then, e.g.,

for an SM capacity of 16 million nodes and reference counts of less

than 256, the size of the ERCH must be increased by 25Z (from 32 to

40 bits per association).

2. An associative Pool Memory must be added. This must store all result

packets which are being withheld at any time; its size is impossible

to forecast without simulation studies.

3. Data paths through the DN, DFCU, and AN may have to be made one bit

wider, but only if their width equals the length of a pointer. In

that case, the decision probably would be instead to make pointers

one bit shorter, cutting the maximum SM capacity to half as many

nodes.

It is very significant that, except for a possible widening of data

paths, none of the modifications affects the DFCU, AN, or DN, or the

actual structure storage mechanism within the SM; they are restricted

primarily to the interface between the SM and the DN.

8.2.1.3 The Program Restrictions

Modifying the interpreter is only one of two parts of the scheme for

guaranteeing determinacy of a program P. The other is the requirement

that P is in LD, i.e., satisfies the Determinacy and Read-Only Conditions.

-460-

Within the narrow scope of the goal of the thesis, this part of the scheme

has zero cost: it has been proven that Algorithm 3.4-1 translates every

LB program into an LD program. For an arbitrary LBS program P, however,

establishing whether determinacy is guaranteed requires examining the

program. The growth of the computational effort of this examination with

program size is an important "figure of merit" for the scheme.

The essence of the Read-Only Condition is to force the primary input

to every write-class execution to be a write pointer. Compliance with this

restriction is so trivially checked in hardware that any effort spent

analyzing the program for it would be extravagant. It is assumed therefore

that the arrival at the SM of any operation packet containing the code for

a write-class operation along with a read pointer as the number-l input

causes an exception, indicating that the program is not guaranteed

determinate.

The Determinacy Condition concerns every two potentially-interfering

firings in a common blocking group in any firing sequence starting in any

initial state S of P. By the Static/Dynamic Group Relationship, a firing

of actor d1 and a firing of actor d2 are in the same blocking group in any

firing sequence only if d1 and d2 are in the same maximal pointer distri-

bution group (m.p.d.g.) in P (Definition 3.2-1). Since one of d1 and d2

must be write-class, the Read-Only Condition implies that that m.p.d.g.

must be G(K(C,l)) for some Copy operator C. Table 3.1-1 may show that,

because of their operations, no firings of d1 and d 2 can potentially

interfere. If d1 is an Update or Delete and d2 is a Select, Update, or

Delete, firings of them potentially interfere only if they have the same

selector input; it may be possible to prove that this never occurs for

-461-

firings in the same blocking group. Otherwise, all firings of d1 and d2

in the same blocking group must be sequenced by all initial states of P.

As mentioned at the end of Section 3.3, the following is believed to be

sufficient for such sequencing, if P is well-formed: either d1 and d

are in separate branches of the same conditional construct, or there is a

directed path in P from one to the other.

Therefore, for every Copy operator C in P, every write-class operator

in G(K(C,1)) must be checked against every other structure operator in

G(X(C,l))UG(K(C,2)), first to see if there can be potentially-interfering

firings of those actors in a common blocking group, and then if so, to

see if those firings are sequenced. Thus the effort expended for each

m.p.d.g. may grow as fast as the square of the number of structure opera-

tors in it. It is reasonable to expect, however, that this number would

be bounded from above by some relatively small constant. If so, then the

total effort required to determine whether an arbitrary 1S program is

guaranteed determinate is proportional to the number of Copy operators in

it; i.e., grovs linearly with program size.

This completes the projection of the costs of the scheme for guaran-

teeing determinacy. Next it is argued that the benefit of the scheme is

that it provides the maximum concurrency possible without far more

extensive modifications of the DFCU.

8.2.1.4 Degree of Concurrency

Section 2.3.3 (q.v.) provides a measure of concurrency and uses it to

compare the LBV program AlterV2 and a similar, but non-functional LBS

program AlterS2. That analysis, based on Assumptions 2.3-1 and 2.3-2,

WA

-462-

concludes that the minimum elapsed time required to "correctly" execute

AlterS2 is 2S less than that for AlterV2, which is at most 8S (S is the

time required to execute a Copy); this is a reduction of at least 25Z.

Translating AlterV2 into LD produces AlterS2' (Figure 3.4-2), which, when

run on the modified interpreter, is functional, and so always executes

"correctly". The only difference between AlterS2 and AlterS2' is the

insertion in the latter of a sequencer, which forces Select S3 to fire

after Update U That sequencer is on one of the maximal-execution-time

paths. Therefore, the minimum elapsed time required to execute AlterS2'

is greater than that for AlterS2 by the execution time of a sequencer.

A sequencer should take less time to execute than a Copy, probably much

less time. Hence the improvement in elapsed time from AlterV2 to AlterS2'

will probably be a few per cent less than the improvement from AlterV2

to AlterS2, but it should still be at least 20%.

LD programs on the modified interpreter are in general not maximally

concurrent. Loss of concurrency occurs whenever the firing of one actor

is delayed, even though all its inputs are available, until another actor

has fired, but the two firings do not potentially interfere. The circum-

stances under which such losses occur, and the further processor modifi-

cations necessary to reduce their frequency, are discussed below, in the

two cases that the firings in question are in the same or in different

blocking groups.

With an optimal algorithm for achieving the Determinacy Condition,

concurrency is lost between firings in the same blocking group of two

actors d1 and d2 only in the following case: one is an Update or Delete,

the other is a Select, Update, or Delete, and it could not be proven that

-463-

every two firings of d Iand d2in any coimmon blocking group would have

different selector inputs. This implies that the unnecessary delay of a

firing of d I until after a firing of d 2can only be detected and corrected

as it occurs, i.e., by processor hardware. An unnecessary delay is indi-

cated by the conjunction of the following three circumstances: (1) both

inputs to d 1are available (i.e., are stokied in the instruction cell for

d 1in the DFCU), (2) the selector input to d 2is available (since d Iis

being delayed unnecessarily; i.e., the selector inputs are known to be

distinct), and (3) another input to d is not available (otherwise d would2 2
have fired). Avoiding the delay requires checking that the cells for all

Update, Delete, or Select operators in the same m.p.d.g. as di store either

a different selector input or a different pointer input than d1 's cell. In

general, this calls for a pair of comparators betwQeen every two cells in

the DFCU which can hold structure operators, a very expensive proposition.

A firing of d 1 in one blocking group can be delayed until after a

firing of d 2in another blocking group without regard to whether the two

could potentially interfere, as in the following case: A Select firing has

-Igenerated a result packet containing value (p,R) which is destined for d 1 s

input, but that packet is being withheld until ERCW,(p) goes to zero, which

will not happen at least until the firing of d 2. Thus even though the

input to d 1 has been generated and could have arrived at the cell fordi

it will not do so until d 2fires. This happens even if those firings could

never potentially interfere, e.g., if d 1 is a Fetch and d 2 is a Delete.

Such inter-blocking-group concurrency losses may be reduced by a

further ref inement of the scheme: The two classes of structure operations,

read and write, are partitioned into five subclasses. The write class is

-464-

split into the write-value (Assign) and the write-branch (Update and

Delete) subclasses. Since a Copy (unfortunately) reads both value and

branches, the read class must be divided into three subclasses: read-value

(Fetch), read-branch (Select, First, and Next), and read-all (Copy). There

are five corresponding types of tagged pointers. A Copy operator must have

three distinct groups of output arcs (write-value, write-branch, and read),

and a Select must have four (the three read subclasses plus a control

output). Finally, there must be three execution reference counts: one for

write-value pointers, one for write-branch pointers, and one for all

read pointers.

The major costs of these further modifications to each of the compon-

ents of the processor are as follows: DFCU, AN, and DN - a pointer data

path which is two bits wider (or a reduction in SM capacity of 75%), and

destination tags which are one bit longer (to distinguish four groups of

output arcs instead of two). SM - one more ERC to store (a size increase

of 20%, assuming as before 24-bit pointers and 8-bit ERC's).

In conclusion, the following claims are made about the degree of

concurrency among structure operato- ider certain "ground rules":

Only the SM can be modified - The or al modified processor is maximally

concurrent (although the maximum SM capacity may have to be reduced

to half as many nodes, if the standard processor data paths are not

wider than a pointer).

The DFCU may be modified slightly - The refinement sketched above,

requiring one extra bit in each destination tag, is maximally

concurrent.

Under at least the first ground rule, the thesis meets its primary goal.

-465-

8.2.2 The Model

The secondary goal of the thesis is to make the proofs of the correct-

ness of the scheme for guaranteeing determinacy as general as possible,

in hopes of shortening future proofs about concurrent-computation systems

other than data flow which use the scheme. The basic proofs concern how

the outputs of an execution depend on the inputs to it and to preceding

executions; any medium for their expression should, therefore, convey this

information with as few extraneous details as possible.

The entry-execution model is a good such medium. In each computation,

there is one entry for each value input to every execution, each value

output by every execution is listed in at least one entry, and execution

order is indicated by initiation order. The steps in using this model to

prove that determinacy is guaranteed in any system are listed at the start

of Chapter 4. As evidenced by the length of Chapter 7, this likely will

* not be an easy chore; only experience will tell if it is easier than it

would be without the results about entry-execution models developed in

Chapter 6.

An important additional application of the entry-execution model is

in describing the behavior of physical processors. A computation can be

viewed as a behavior of a data-flow processor, under the following inter-

pretation: An execution corresponds to an operation packet. An operation

packet is "grown" in the instruction cell for an actor as an accumulation

of result packets. When a full set of result packets has been rez.eived,

t the actor is fired; i.e., the operation packet is sent to a Functional

Unit. There it generates result packets, which are sent through the DNj to the proper incipient operation packets in the DEC11. Thus the entry

-466-

of a result packet into the DN marks the transfer of a value from an output

of one operation packet to an input of another. Substituting "execution"

for "operation packet", this is just the definition of an entry. Under

this interpretation, the algorithms for reconstructing the firing sequence

4 (i from the entry sequence w (Definition 4.3-4) reads: Accumulate the

entries (result packets) which are the inputs to an execution (operation

packet); when the initiating (last) one arrives, register a new firing.

This is just the principle of operation of the DFCU.

A computation (sequence of entries) potentially provides a much more

precise description of processor behavior than a firing sequence. The

latter implies that at most one YU is active at a time: An FU is active

for as long as it takes to execute the operation of one firing, and only

after that is finished is another PU activated by the next firing in the

sequence. In a real processor, however, an PU is active for some of the

time between the completion of the operation packet for a firing and the

.arrival at the DN of the first of the associated result packets. On the

above interpretation of computations, this active period corresponds to

the interval between the initiation of an execution and that execution's

first output entry. Since such intervals can overlap, a computation can

describe concurrent activity by several PU's.

Unfortunately, the full descriptive potential inherent in computations

is not realized by the model EE(L,I) of data-flow language L and inter-

preter 1, as the following demonstrates: If the data-flow processor

implementing I is running program P, then for any actor d in P, there is

an instruction cell in the DFCU. Initially, some number n of d's input

arcs are empty. That cell will first recognize d as enabled at some time

-467-
th

after the time t0 at which the n result packet destined for the cell

enters the DN. The cell will then send an operation packet to an FU, where

result packets are generated; the first of these enters the DN at some time

tI > t0 * It is always possible that no other result packet enters the DN

between t0 and tI (unless, as explained later, d is a Select and this is

the modified processor).

Each job J in the expansion of P from EE(LI) consists of all the

computations generated by I when started in any of some equivalence class

of initial states for P. Ideally, those computations would be the

descriptions of all possible behaviors of the processor implementing I

when started in any of those initial states. If this were so, then by the

above, for any af6gEJ in which f is the nth (initiating) entry to Ex(d,1)

and g is any output entry of that execution, afg would be in J (i.e., none

of the entries in 5 would have to appear between f and g). But

Definition 4.3-5 imposes an additional restriction on computations in J:

for every input entry h to g's target execution, the execution of which h

is an output entry must be initiated in af. This is an artificial restric-

tion,.not reflecting any physical processor characteristic, and so inval-

idates EE(L,I) as an accurate description of the implementation of I.

A model in which that restriction is removed would provide a descrip-

tion of the standard processor which is both accurate and significantly

more precise than firing sequences. For the modified processor, the

restriction cannot be removed entirely, as there is a case in which certain

result packets may have to enter the DN between t0 and t1 : If the result

packet entering at t1 has value (p,R), ERCw(p) > 0 at to, meaning that

some instruction cell is storing the value (p,W), and that cell needs more

-468-

inputs before it is enabled. The following redefinition contains a

suitable restriction, producing an accurate description of the behavior

of either processor:

Definition 8.2-1 Let S be any initial state for a data-flow program P,

and let 2 be any halted firing sequence starting in S. Then the set

JS12 of computations for S and 2 consists of each permutation P of rj(S,2)

which satisfies all of the following:

1. 4)(P) is the reduction of 2.

2. , is causal.

3. For every prefix af of 0, let 8 be the prefix of 9 whose reduction

is ((a), let the destination in T(f) be Dst(Ex(dk),J), and let b

be the arc given by:

diDL - b is the number-j input arc of the actor labelled d

d - (c,n) and c * "OD" = b is the number-n input arc of the

actor labelled c

d - (c,n) and c - "OD" = b is the number-n program output arc

Then there is a token on b in S*O.
A

This revision affects the proofs only of the following: Lemma 4.3-3,

Lemma 5.3-2, Lemma 7.2-8, and Theorem 7.2-5. While the effects on the

first three of these are minor, the last one, the proof of persistence,

would be extremely difficult without the original restriction. As it has

been proven that every expansion in the original model is determinate,

however, it should be possible to work backwards to prove that every

expansion in the revised model is persistent. Since all other proofs

-469-

apply to the revised model (with min~or reworking), every expansion in the

revised model is determinate. This is a very powerful statement about the

behavior of a correct physical implementation of a data-flow interpreter.

8.3 Suggestions for Further Research

This section presents two types of suggestions: (1) resolving

questions previously raised, about the scheme and the model as presently

constituted, and (2) exploring proposed extensions.

8.3.1 Open Questions

Several unsolved problems have been noted in the course of the thesis,

many of then in the just-concluded section evaluating the proven results.

These are summarized below:

1. Confirm a general syntactic test for the Determinacy Condition. It

is known how to identify those pairs of actors of which all firings

in the same blocking group must be sequenced. It is believed that

in a well-formed program, it is sufficient that for every such pair,

either each actor is in a separate branch of a conditional construct

or there is a directed path between them. This claim has thus far

successfully resisted extensive efforts at a proof.

2. Devise a syntactic means of recognizing potential hangups. The

following line of attack seems promising: The blockingj diagram for

program P is a graph with one node for each Copy and Select operator

in P. An arc is drawn from the node for Select S to that for Copy C

if f there is a directed path in P from S to any actor in the m.p.d.g.

G(K(C,l)). An arc is drawn from the node for C to the node for S if f

a firing of S could ever output the same pointer as a firing of C.

-470-

A hangup occurs when (a) output tokens are being withheld from S's

output arcs until an actor in G(K(Cl)) fires, but (b) that actor

cannot fire until tokens appear on S's output arcs. This situation

implies the existence of a directed cycle in the blocking diagram.

3. Prove that every expansion in the revised entry-execution model of

LD on the modified interpreter (just described in Section 8.2.2) is

persistent, hence determinate.

4. Conduct more detailed studies Comparing the benefits and costs of LD

on the modified interpreter against those of LV on the standard

interpreter. The major benefit claimed for LD is increased concur-

rency. Classes of "toy" programs in which structure operations

predominate may yield analytical comparisons, such as that between

AlterV2 and AlterS2; siimuatlon of a set of real programs is needed

to discover the actual concurrency advantage, if any. Establishing

the incremental cost of the modified processor must await determin-

ation of the base cost of the standard processor, including the SM.

5. Resolve the problem introduced by the ability to use Structure-as-

Storage operations to build a heap containing directed cycles

(directed cycles cannot be constructed using just the Structure-as-

Value operations [12]). The presence of cycles does not directly

impact the determinacy scheme, but it does confound the reference-

counting method of storage reclamation: In a directed cycle in

which every node is inaccessible, every node still has a predecessor,

hence a non-zero structure reference count; thus the storage for

cycles is never reclaimed. Several solutions suggest themaselves:

-471-

a. Run only programs which are equivalent to L programs. Such a

program does not build cycles, but is more concurrent than its

LVcounterpart.

b. In the same vein, encase all write-class operators in a set of

procedures, similar to those defined in [21] to implement a

relational data base. It may then be possible to prove that no

program using just these procedures can build a cycle.

c. Prevent or mark each cycle dynamically, during execution of the

instruction which would create it. This involves finding all

nodes reachable from that pointed to by the number-3 input of an

Update, to see if the node pointed to by the number-l input is

among them.

d. Enhance the 514 with an incremental garbage collector [16]. This

is an independent processor, which traces and marks all access-

ible structures (i.e., beginning with pointers having non-zero

ERC' s), and then reclaims all unmarked nodes.

6. Design a Structure Memory, a Functional Unit which directly and

efficiently executes a set of structure operations.

8.3.2 Extensions

This section discusses several partially-developed extensions of both

the scheme and the model. The major extension of the scheme is motivated

by a significant implementation inefficiency inherent in the structure

operations presented earlier. The problem is illustrated by Figure 2.3-5d,

which is the final state in a sequence starting in the initial state of

program AlterS shown in Figure 2.3-4. The heap in the final state

-472-

contains .both the component which was a program input (nodes a, and m2)

and the component which is a program output (nodes nI and n2).

This portends inefficiency in a physical SM if, in the initial state,

SRC(m1) = 0 and ERCR(pl)+ERrW(pl) - 2, where p1 is the pointer to mil

I.e., there are only two tokens with value (pl,R) or (pl,W) in the DFCU, and

these are on arcs in AlterS. As a consequence, in the final state,

SRC(m1) - 0 and ERCR(pl) - ERCw(pi) - 0, so the storage for m can be

reclaimed. Included in that reclamation is an implicit Delete of all

branches emanating from m; i.e., for each successor n of m1 (including

m2), the number of branches terminating on n, which is SRC(n), is reduced

by one. Assuming that, in the initial state, SRC(m 2) 1 and

ERCR(p 2)+ERCW(P 2) - 0, where P2 is the pointer to m2, m2 will be inaccess-

ible, hence eligible for reclamation, as soon as mI is reclaimed. The

program output component (nI and n2) is almost identical to the program

input component. Therefore, the effect of the program is to copy its

input component, with a minor alteration, and then discard that component.

It is far more sensible to make the minor change directly to the input

component, and then output the program input p. This would save the

considerable efforts involved both in copying the input component and in

reclaiming it.

Altering an2 (changing its value from 2 to 3) would require an Assign

firing which has p2 as an input. That pointer can only be obtained as the

output of a Select firing which has p1 as an input. But an Assign firing

must have a write pointer as input, and a Select outputs only read

pointers. This dilemma can be resolved by introducing a ninth structure

operation, Modify, differing from Select in that it outputs write pointers.

-473-

The Modify operation permits a program to avoid copying a node which

will immediately become inaccessible; unfortunately, it also defeats the

scheme for guaranteeing determinacy. This can be rectified by a simple

extension of the scheme. Reviewing its original explication (Section 3.2),

the possibilities for potential interference between firings in different

blocking groups are set down as the Potential-Interference Assumption.

This presupposes that any write-class firing in firing sequence 2 is in

B 2(Tg(C,n)) for some Copy operator C, which is no longer valid with the

introduction of the Modify operation. Hence, a slightly different

Potential-Interference Assumption is needed:

Given a firing sequence 2 and two distinct blocking groups B 2(e) and

B We), some firing in one group potentially interferes with some

firing in the other if f:

1. e =Tg(dl,n 1) for some n,, where d, is a Copy or Modify operator,

2. e' -Tg(d 2 n 2) for some n 2 9 where d 2 is a Select or Modify, and

3. the n 2 thfiring of d 2 outputs the same pointer as the n1t

firing of dV

The strategy adopted is to sequence all firings in one group with respect

to all firings in another group if it is assumed that some firing in one

group potentially interferes with some firing in the other.

All the firings in blocking group B 2(e 2) are sequenced after all

firings in B (e) by the Group Sequencing Technique, consisting of two

rules:

1. The first tokens with tag e1 appear before the first tokens withj

tag 02

-474-

II. The first tokens with tag •2 do not appear while there are tokens

with tag • 1 in the configuration.

Rule II leads to the Blocking Discipline: For any pointer p, no token

whose value is the tagged pointer TP(pe 2) appears on any arc if there are

tokens of value TP(p,e) on any arc. At most one Copy firing outputs p,

and no other firing can output p before it does; therefore, tokens never

need be withheld from output arcs of a Copy. For any tag e2 m Tg(S,J)

where S is a Select operator, by the Potential-Interference Assumption,

the firings in B2 (e2) are to be sequenced after those in B (e only if

el - Tg(C,n) for Copy or Modify operator C. For tag e2 - Tg(M,J) where

M is a Modify operator, 01 = Tg(A,n) where A is either a Copy or Modify

operator or a Select operator. It is argued in Section 3.3.1 that the

th
pointer-valued tokens output by the n firing of structure operator d in

2 need have only one of two tags: W if there may be a write-class firing

in B 2 (Tg(d,n)) (i.e., if d is a Copy or Modify), or R otherwise.

Therefore, Rule 1I is enforced as follows:

For any pointer p,

no tokens of value (p,R) are placed on output arcs of a Select

operator while there are tokens of value (p,W) in the configuration,

and

no tokens of value (p,W) are placed on the output arcs of a Modify

operator while there are tokens of value (p,W) or (p,R) in the

configuration.

Rule I is enforced by a combination of the two more fundamental

rules:

-475-

Ia. If, for 1-1,2, ei = Tg(d,nt), the first tokens with tag e1 appear

thbefore the first tokens with tag e2 1ff the n1 firing of d

th
precedes the n2 firing of d2 '

th th
b. The n 1 tfiring of d 1always precedes the n2 firing of d2 .

Rule Ia implies that the third component of the modified interpreter state,

Q, should contain, for each pointer p, a first-in, first-out queue of actor

labels, rather than a pool, as the following demonstrates: The mth firing

of Select S and the nth firing of Modify M, in that order, may attempt to

output tokens of value TP(p,Tg(S,m)) and TP(p,Tg(M,n)) while there are

still tokens of value TP(p,Tg(C,J)) for Copy operator C in the configur-

ation. By Rule II, none of the former tokens can appear on output arcs of

S or M until the last token with value TP(p,Tg(C,J)) disappears. At that

time, by Rule Ia, the tokens of value TP(p,Tg(S,m)) must appear on S's

output arcs first, since S fired before M. Tokens cannot be placed on M's

output arcs at this time, by Rule II again. Thus the necessity of

remembering the order in which actor labels are added to Q(p).

Rule Ib applies to any two firings of actors d1 and d2 which output

the same pointer if one of the actors is a Copy or Modify and the other is

a Modify or Select. A Copy firing always precedes any other firing which

outputs the same pointer. If one actor is a Modify and the other is a

Modify or Select, there are two cases to consider: the two firings either

do or do not have identical pointer and selector inputs. If they do,

th fiin
Rule Ib becomes: Given that the nh firing of d1 and the a2

h firing of

d2 in some firing sequence have the same pointer and selector inputs, at

least one operator is a Modify, and the other is a Modify or Select, those

firings must be sequenced. Significantly, an equally-true statement is

4

-476-

obtained by replacing "Modify" in the foregoing with "Update or Delete".

The determinacy scheme guarantees the latter sequencing, so the problem

of enforcing Rule lb in this case is fundamentally no different than one

which has already been solved. That solution is easily adapted to handle

the new Modify operator as follows:

A. Modify (like Update and Delete) is a write-class operator; i.e.,

requires a write pointer input.

B. The Determinacy Condition is extended to require sequencing of any

two Select or Modify firings in the same blocking group which may

have the same selector inputs, if at least one is a Modify firing.

The extension of the determinacy scheme to accomodate the Modify

operation, as developed to this point, is sumarized below:

I. Modify operates like Select except that it requires a write-pointer

input and produces a write-pointer output, and any tokens of value

(p,W) are withheld from the output arcs of a Modify so long as there

are tokens of value (p,W) or (p,R) in the configuration.

2. The third state component Q consists of a queue of actor labels for

each pointer.

3. The Determinacy Condition is extended as just noted.

It is believed that these changes will yield the following guarantee:

Tor any equal initial states S1 and S2 and halted firing sequences 21 and

2' S2'92 equals S 1 1 , unless there is a Modify d, and a Modify or Select

th th
d2 , and an n1 and n2, such that the n1 firing of d1 and the n2 firing

of d2 are not sequenced and in Q1. they have the same pointer output but

different pointer or selector inputs. A suggestion for further research

is to use the techniques and results of the thesis to prove this formally.

-477-

If two unsequenced Modify or Select firings can output the same

pointer p to node n given pointers to different nodes m1 and m2, it is

because there are branches to n from each of m1 and m2 . This condition

is easily detected, as the structure reference count SRC(n) wi.l be

greater than one. Thus it is possible to determine, at a Modify firing,

whether another Modify or Select firing with a different pointer (or

selector) input could subsequently output the same pointer. Rather than

try to sequence these two firings, with their different inputs, the need

for sequencing can be eliminated altogether, by making the Modify operation

more sophisticated: Before a Modify firing outputs pointer p to node n,

SRC(n) is checked. If it is 0 or 1, the pointer is output as indicated

above (i.e., it is withheld until ERCR(p)+ERCW(p) is zero). If SRC(n) > 1,

the effect of the Modify firing becomes as if it had been replaced with

the four actors depicted in Figure 8.3-la. That is, a copy n' is made of

node n and n' is made the 's'-successor of the node m (Figure 8.3-1b);

then the pointer to n' is output immediately. The component rooted at m

after this alternative Modify action (called automatic copying) equals

that before the action, and the component rooted at n' equals that rooted

at n. The only difference is that every other firing which outputs a

pointer to n' must follow this Modify firing which activated n'; thus

Rule Ib is obeyed. A formal proof is needed of the claim: with automatic

copying by Modify operators, all programs are functional; furthermore,

every LV program can be translated into an equivalent one of these

programs, which not only may have more concurrency, but may act ivate

fewer nodes.

-478-

Modify Upat

L

Effective Dynamic Substitution

(a)

odify Modify

n wsmn n

Effect on Heap

Oi)
Automatic Copying

Figure 8.3-1

-479-

Two final extensions of the determinacy scheme are less well

developed. The first is the accomodation of procedures [12]. The major

problem introduced is that a single blocking group may contain firings of

actors from several different procedures. Any syntactic test for the

Determinacy Condition must require only that each individual procedure be

verified independently; it would be unworkable if each change to a

procedure entailed re-examining every procedure which it may ever call or /
which may ever call it. The second extension is the use of structure

operations to obtain a conveniently-controlled non-determinacy. A most

exciting prospect is to allow a node n to have an attribute (the shared

attribute), which would disable automatic copying, so that a Modify firing

could output a write pointer to n even when SRC(n) > 1. From the argument

given above, different firing sequences starting in equal initial states

give rise to unequal final states only if two firings with different

pointer or selector inputs output pointers to the same shared node in a

different order.

The only developed suggestion for extending the entry-execution model

is a consequence of storage reclamation. Specifically, the finiteness of

the set of pointer values in any physical implementation means that one

pointer may be the output of several Copy firings in a single firing

seque',nce. A correct implementation never allows a Copy firing to output a

pointer to an accessible node; every Copy firing outputs a pointer which

either does not point to any node or points to an inaccessible node, whose

storage has presumably been reclaimed. Modeling such a correct implemen-

tation requires two initial steps:

AO-AOA3 233 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE--ETC F/S 9/2
DATA-STRUCTURING OPERATIONS IN CONCURRENT COMPUTATIONS. (U)
OCT 79 0 L ISAMAN

UNCLASSIFIED MIT/LCS/TR-224 N

I 0K IhmhEEEhhh

113 1 1112.

1.25 1 I.6

MI' OCOPY HI SOLLI)N II \I t 'ARI
N-MIOtN-1I tqI.z

I
1 l .\ NPA,' " A' .

-480-

1. Redefine the access history, which is more properly a history of the

accesses to a unique node than the history of accesses using a unique

pointer. Two entries with value p in a computation a) should be in

the same access history if f they are not separated in o) by the

initiating entry of a Copy execution with output entries of value p.

2. Add a new constraint to the definition of a Structure-as-Storage

model. This should reflect the fact that if the n thfiring of Copy

or Select operator S in firing sequence a outputs p, then there are

tokens of value p in all subsequent states until the last firing in

blocking group B 2 (Sn). Therefore, no Copy firing should output p

between the n th firing of S and the last firing in B 2(S,n).

These revisions must then of course be propagated through the proofs in

Chapters 5, 6, and 7.

8.4 Conclusions

Those results of the thesis which are felt to be significant original

contributions are listed briefly below:

1. A state-oriented, but non-graphical, definition of a complete set of

primitive structure operations (of which First and Next are original)

(Section 2.2).

2. A definition of equality of data-flow Interpreter states with heap

components, and the concomitant definitions of functionality and

equivalence between two languages (Section 2.4).

3.* The language L , the modified interpreter, and a translation algor-

ithm to take any veil-behaved LiBV program Into an equivalent LD

-481-

program which, at least under certain ground rules, is maximally

concurrent.

4. A new model of concurrent computation, which offers a memoryless

(non-state-oriented) representation of the essential order-dependent

input-output behavior of structure operations. This expresses what

is common among all systems of concurrent computation over data

structures, without regard to their idiosyncratic control and local-

memory structures (Chapters 4 and 5).

5. A definition of determinacy and a set of axioms which are proven

sufficient for determinacy, all using the entry-execution model, and

hence all applicable to any concurrent computations over data

structures (Chapter 6).

The proposed extensions should prove even more significant. The

Modify operator can eliminate most of the need for the Copy operator, by

automatically copying a node only when necessary for determinacy. The

shared attribute for a node, which defeats automatic copying, should

provide for natural solutions to non-determinate problems, such as the

airline reservation system [5], in which the integrity of the data base is

readily assured.

.1
_ _ _

" • . ' " 7" I

-482-

Appendix A

Proof of Theorem 2.4-1

Theorem 2.4-1 The "Match" relation is symmetric and transitive.

Proof:

Key definitions: Def. 2.2-2 - successor, reachability, path

Def. 2.4-1 - equal components in a heap

Def. 2.4-2 - Match

Prove symmetry first. Let S 1 -(r 1 U1) and s2 - (r 2,U2) be any two

interpreter states, where U 1 -(N 1,r11,sm1) and U 2 a (N 22 1SM2). Let b

and b2each be an arc from the programs of which rIand r 2 respectively

are configurations. Then for any one-to-one mapping 1: N 1 -0. N2, prove

that Match((b 2 9S2), I9 (blv S1)) - Match((b1 ,S1), I-1, (b 2 S 2)).

(1) Since I Is one-to-one, I1 : N 2 -. N, In also one-to-one.

(2) Let aU1EN, and m2EN 2 be any two nodes for which U2.=2 - U.. 1 . Then

m- 1(m1), and for each node n1 equal to or reachable from m in

USM2(I(n1)) -I(SM 1(nl)).

Now prove the following preliminary result:

A: Vn(Nl, n is reachable from ain U In srahbefo

and Vn(N 21 a is reachable from M2 " -1 (n) is reachable from a,

Proof of A is by induction on the length k of the shortest path from a

tont, or fromm22 to n.

Basis: k - 1.

(3) SM1 (ml) - {v, (al.rlQ (Bj~r j)) iff

-M {mv, (s1lI(rl)),....,(sJJ(r)) (2)

-483-

(4) VnENl, n Is reachable from m yasots aho egh1 ni

a successor of a, 26 31: r 1 - n 1(3)] - I(n) - 1(r)is a successor

of m2 [(2)+(3)] -1(n) is reachable from mn2

Similarly, VnEN 2 9 n is reachable from m 2 by a shortest path of length 1

-31: I(r I) - n [(]) - I-1 (n) -r I is reachable from m 1 [(2)+(3)].

Induction step: Assume that A is true for any node reachable from an

(or mn2) by a shortest path of length k > 0.

Vn(N1, n is reachable from m1 by a shortest path of length k+l

3n'tN 1:n is a successor of n' and a' is reachable from aby a shortest

path of length k. n' is reachable from ml. by a shortest path of length

k - (n') is reachable from m 2 [Ind. hyp.]. n is a successor of n' -*

I(n) is a successor of 1(n') [(4]. Therefore, n 1 is reachable from M

by a shortest path of length k+l - 1(n') is reachable from m2 and I(n)

is a successor of I(n') - I(n) is reachable from a 2. As in the basis

for A, a symuetric argumient will show that VnEN 2, n is reachable from m2

by a shortest path of length k+1 -* I (n) is reachable from ia,.. Thus

A is proven by induction.

(8) Let n 2 be ma2 or any node reachable from m 2 in U 2. Then I- (n 2) is

reachable from ain U A

S2(2I(~(I (n2))) e S'2n2) -(SM.1(I ())
[(1). so SMl(I'1(n 2)) -IV, (s. 1 .. ~s~j}iff

M (V, (s~~1)..(1 I(r~)} Furthermore,

SH1(f1 (n 2) I V, (e1lr 1).0.(s 1.r)1 1ff

(11U(n 2) I V, (s,,I MIr)M. ... (sJJ M(Irj) j'(1)). Therefore

(9) Syr (n 2) (SM2(n 2))

-484-

(10) U2. 2 I U. 1 - U -U-1=U2.a2 (2)+(8)+(9)

Nov, Match((b 2 ,S 2), I, (blS 1))

-b 1 has no token In r1 and b2 has no token in r2, or

b1 has a non-pointer value in F1 and b2 has the same value in F2, or

b1 has a pointer value pit b2 has a pointer value P2 and

U2 .1 2 (p2) 1 U,.fli(p1)

-b 2 has no token in r2 and b, has no token in 1, or

b2 has a non-pointer value in F2 and b1 has the same value in r1, or

b2 has a pointer value P2 , b, has a pointer value pl and
-1

Ul.rll(pl) I U2.rl2 (P 2) [(10)]
Match((bl,S1), 1 , (b 2,$2))

Transitivity: Let S- = (r,'UI), for i-1,2,3, be any three states, where

Ui S (NiniSMi). Let b I be any arc from the program of which r. is a

configuration. Then prove that for any two one-to-one mappings

11: N1 -+ N2 and 12: N2 - 39 Match((b2 ,S2), I1, (btS 1)) and

Match((b3 S3), 12' (b2'5 2)) - Match((b 3 S3) , 12'Il, (bls 1)), where

1211 is the composition of the mappings I1 and 1 2

(11) Let m1 EN , m2EN2 , and m3(N3 be any three nodes for which

U2 '.. 2 iI U1..1 and U3 .. 3 - 2 U2 .s 2 . Then &2 - 1,(21), 23 - 12(u2), for each

node n, equal to or reachable from m. SM2(11(n1)) - 11 (SM1(nI)), and for

any node n2 equal to or reachable from . 2, SM3(12 (n2)) - 12(SH2 (n2)).

(12) a3 1 2"11(al) (11)

(13) Let n, be any node equal to or reachable from i. Then II(n1)EN2

is equal to or reachable from 1i(.i) -S 2

SMI(nl) - {v, (, 1 , r 1),...,(sjrj)} iff

SN 2 (1 1(nl)) - {v, (SlI(r))...,(sjI 1 (rj)} (11)1 iff

-485-

S31(Ii(n)) - v, (SlZ2(1l(rl))),....,(sj,12(Il(r)) MI [(13)+(11)].,

I,e., SM3(I2"I(n)) - 2 .I1 (SMl(nl)). Therefore,

(14) U3.m3 12;1 U1.m1 (12)+(13)

M atch((b 2*S 2)'t IIs (bits 1) =

[b1 has no token in r2 b has no token in r2] A

[b1 has a non-pointer value - b has the same value] A

[b1 has pointer value p,
= b2 has a pointer value p2 such that

Ii
U2.n2(p2) - Ul'nl(pl

)],

and Hatch((b3,S3), 12, (b2,S2)) -

[b2 has no token in r2 t b3 has no token in 131 A

[b2 has a non-pointer value - b3 has the same value] A

[b2 has pointer value P2 - b3 has a pointer value P3 such that

U3 ' nr3(p3) -2 U2.i2(p2)],

so Match((b 2 ,S2), 11, (bl,S1)) and match((b3 ,S3), 12' (b 2 ,S2))

[b1 has no token in r1 -b 3 has no token in r 3] A

[bI has a non-pointer value - b3 has the same value] A

[b1 has pointer value p, - b3 has a pointer value P3 such that

U3.fI3(p3) 12- 11U1 .n1 (pl)] [(14)]

•Match((b3 ,S3), 12"11, (bi,S1))

-486-

Appendix B

Proof of Theorem 3.4-2

Theorem 3.4-2 Let P be any vell-behaved LBv program, and let P' be its

translation via Algorithm 3.4-1. Let S be any initial standard state for

P, and let S' be any initial modified state for P' which simulates S.

Then for any halted firing sequence 2 starting in S:

1. R(2) is a halted firing sequence starting in S', and

2. S"R(2) simulates S'2.

Proof:

Key definitions: Def. 2.4-1 - equal components; Def. 3.4-1 - match;

Defs. 2.1-5+2.2-5 - standard interpreter;

Defs. 3.3-7+3.3-8+3.3-9 - modified interpreter

Proof is by induction on the lengths of the prefixes of 2. For any

prefix e, let e' - R(O), and let the state S'.e' be (r',U',Q'). Let A

and T be the maps generated by Algorithm 3.4-1 in translating P into P'.

Then the induction hypotheses are:

V: R(O) is a firing sequence starting in S'.

W: There is no write pointer on any arc in r'.

'X: Q' is empty.

Y: For any arc b' which is a number-1 input arc of an Assign, Update,

or Delete, or of a sequencer in P', there is no token on b' in r'.

Z: S"O' simulates SIG.

Basis: 101 " 0. Then 0' - 0 - X [Alg. 3.4-2], so

(1) e' is a firing sequence starting in S', 3'-' - S', and S"0 - S

-487-

Def. 2.3-1

There are no write pointers in an initial modified state, and the pool

component therein is empty [Def. 3.3-5]. The only arcs in P' which have

tokens on them in an initial jtate are program input arcs and control arcs

[(l)+Defs. 3.3-5+2.2-6], and none of those arcs is a number-I input arc

of an Assign, Update, Delete, or sequencer. Since S' simulates S by

hypothesis, SI*' simulates 3"0 [(1)]. Hence, V, W, X, Y, and Z for e.

Induction step: Assume that the five induction hypotheses are true for

some proper prefix a of 2. Consider prefix 0p of 2, in which the last

firing p is of an actor labelled d in P. Use the following notation:

(rIU) is the state S*8, where U1 - (NIT 1 ,SM1)

(r 2 ,U 2) is the state S*O, where U2 - (N2 ,fl 2 ,S1 2)

(r1,U1,Q1) is the state S''*', where U' M (N- IJSI)'

(r2,U2,Q2) Is the state S'R((p), where U2 - (N2,12,SM)

(2) d is enabled in F1 Def. 2.3-1

(3) There is a mapping I: N1 -. N. under which, for any arc b in P,

Match((A(b),S'*9'), I, (b,S'8)) ind. hyp. Z+Def. 2.4-7

(4) For any arc b in P, there is a token on b in 1 iff there is a token

on A(b) in r2 (3)

S .There are two cases to consider: d either is or is not a Conast, Append,

or Remove.

Case I: d Is not a Conat, Append, or Remove.

(5) T(d) is the label of a single actor in P', having the same type as

d, and for each input and output arc b of d in P, A(b) is the same

input or output arc of T(d) in P'

T(d) is enabled in rl, unless it is a Select S and there is a pointer p

-488-

such that SfQ,(p) [(2)+(4)+(5)+Def. 3.3-6], so

(6) T(d) Is enabled in m Ind. hyp. X

Since P is an LwV program, d is not a Copy, Assign, Update, or Delete

[Def. 2.2-3], so

(7) T(d) is not a Copy, Assign, Update, or Delete (5)

(8) OeP', where T' is the firing which is the label T(d), is a firing

sequence starting in S' ind. hyp. V+(6)+(7)+Def. 2.3-1

Since 0'0' - R(O)O' is R(GO) [(8)+(7)+Alg. 3.4-2], V for ep [(8)].

Let (V',U",Q") be the state Fire(S'',T(d)), and let r' be

Standardr((Strip(rjT(d)),U1),T(d)). Then there is a write pointer on

an arc b in r2 there is a write pointer on b in " - since T(d) is

not a Copy [(7)], there is a write pointer on b in r., there is a write

pointer on b in T , unless b is an output arc of pl actor T(d), in which

case there is a write pointer on an input arc of T(d) in ri. Therefore,

(9) W for ft, and there is no write pointer on b in " ind. hyp. W

T(d) is not a Select with a pointer on any output arc in r, -*

T' - T, and Q" is empty [(7)+ind. hyp. X] q - r" - r' and Qv is empty.

T(d) is a Select with pointer p on its output arcs in T - r" is r'8 8

with all those output tokens removed, and Q" is empty except that Q"(p) is

{T(d)) [ind. hyp. X] - r is r' with tokens on the output arcs of T(d)

2

whose value is (p,R), and Q' is empty [(9)]. Therefore,

(10) X for &p, and r2 equals r, with 'W' tags in each pointer-valued

token on an output arc of T(d)

For any arc b in P', there is a token on b in r' but not in r, only

if b is an output arc of T(d). Every number-1 input arc of an Assign,

Update, Delete, or sequencer is an output arc of a Copy, Assign, Update,

-489-

or Delete. Hence, Y for &p [(lO)+(7)+ind. hyp. Y].

U'Standard ((Strip(rjT(d)),Uj),T(d)), s
U2 50

in1 -22~nN -1lU. ~:eand for mapping +(7

Notation: For any two configurations r and r,, any two arcs b and b' in

the programs of which r and r' are configurations, and any value vEV,

abbreviate "there is a token of value v on b in r if f there is a token

of value v on b' in r"' by "TV(b,r) - TV(b',r') - v",.

(13) For every arc b in P, b is not an input or output arc of d

TV(b,r 2) - TV(b,r 1) A A(b) is not an input or output arc of T(d)

[(5)] TV(A(b),rp - TV(A(b),rj) (10)

(14) d is a gate and c is its control input arc = T(d) is the same type

of gate, and A(c) is its control input arc [(5)] T(d) has the

same control input in r!as d has in rl(3)

For any arc b in P, b is an input arc of d =* there is a token on b inr2

if f there is a token on AMb in r', hence in r2,, and if so,

TVbr2 TVbr1)adT(A(b),r) - TV(A(b),rll) [(8)+(5)+(14)+(10)].

Thus,

(15) For any arc b in P, b is not an output arc of d -there is a token

on b in rif f there is a token on A(b) in r,, and if so,

TV(b,r) TV(b,r) and TV(A(b),r;') - TV(A(b).rp) [(13)] - there

Is a token on b in riff Lhere is a token on AMb in r' , and ifI so, Match((b,S*ecp), M, (b,seO)) and Match(((b),S'0'cp'), M,

(A(b).s'eO')) [(12)] Match((A(b)XS''c') I, (b,SeO~))

(3)+Thm. 2.4-1

A

-490-

For the output arcs of d, there are three subcases to consider.

Case Is: d is a pI actor. Then there are tokens on all output arcs of d in

iff there are tokens on all output arcs of T(d) in r', hence in r'
22'

and if there are such tokens, then there is an arc a in P such that, for

any output arc b of d, TV(b,r2) - TV(aU 1) and TV(A(b),rU) - TV(A(a),r')

[(8)+(5)+(14)]. Hence, Hatch((b,S"f), H, (a,S'e)) and

}atch((A(b),S'0'p'), M, (A(a),S'6')) [(12)), so

(16) Hatch((A(b),S'-'p'), I, (b,S'00)) (3)+Thm. 2.4-1

Case Ib: d is neither a pl nor a structure operator

(17) For each input arc a of d in P, there is a non-pointer value on a

in r1, and there is a non-pointer value on each output arc of d

in r2

By (3), then, TV(A(a),r,) = TV(a,r1). For each output arc b of d, there

is a token on b in 12 and one on A(b) in r', and the value of the token

on A(b) in r' depends on just the tokens on T(d)'s input arcs in r', in

exactly the sane way that the value of the token on b in r 2 depends just

on the values of the tokens on d's input arcs in 1 [(8)+(5)]. Therefore,

TV(A(b),r) - TV(b,r2) [(10)], so

(18) Hatch((A(b),S'-''), I, Cb,S*'o))

Case Ic: d is a structure operator

(19) d is a Fetch, First, Next, or Select Def. 2.2-3

(20) If d is a Next or Select, then it has a selector input arc a, T(d)

has a selector input arc A(a), and TV(a,r1) TV(A(a),r,) (5)+(3)

(21) Let p be the value on d's pointer input arc in r1 , and let m - 1l(p).

Then there is a token with pointer value p, (p',R), or (p',W) on

the pointer input arc of T(d) in ri, and, letting m' 111(p'),

-491-

U' ' V m (5)+(3)

(22) SM1 (m) {v, (sl,n1),...,(sjnj)} iff

SM'(m') - {v, (SlZ(nl)),...(sj9z(nj))1

(23) Let b be any output arc of d. Then A(b) is the same output arc of

T(d) (5)

d is a Fetch - TV(b,r 2) depends only on the value in SM1 (m), and

T(d) is a Fetch, so TV(A(b),r s) depends in the same way on the value in

SMI(m') [(5)+(21)+(23)] = TV(A(b),r) - TV(b,r2) [(22)+(10)].

d is a First or Next or d is a Select and b is its control output arc

TV(b,r 2) depends only on the set of selectors in SM1 (m) and on the

value of the token on d's selector input arc a, if any, and since T(d)

is the same type of actor, the value on A(b) in r" depends in the sames

way on the set of selectors in S '(m') and on the value of the token on

T(d)'s selector input arc A(a), if any [(5)+(21)+(23)] - TV(b,r 2) =

TV(A(b),rj) [(22)+(20)+(10)]. From these two paragraphs,

(24) d is a Fetch, First, or Next, or b is a control output arc of a

Select d - the value of the token on b in r 2 is not a pointer,

and TV(b,r 2) - TV(A(b),r2) - Match((A(b),S'e'(p'), I, (b,S'Gp))

Otherwise, d is a Select and b is a data output arc of it. Let s

be the value of the token on d's selector input arc in r1. Then T(d) is

a Select with a selector input of s [(19)+(24)+(5)+(20)]. Ji: =i f 8

the value of the token on b in F2 and of that on A(b) in r' are both
8

undef [(22)]. 3i: si
= s - the value of the token on b in r2 is q,

where ri (q) - ni, and the value of the token on A(b) in r' is q,, where

fl'(q') I(ni) [(22)] - the value of the token on A(b) in r2 is (q',R)

[(10)]. In this latter case, fl2(q') - I(ni) = 1(12(q)) [(11)], and for

-49 2-

any node ni, n is equal to or reachable from ni 12 (q) inU 2 -nis

reachable from a in U, hence in U1 [(22)+(ll)+Def. 2.2-21 -* SN'(I(n))-

SM'(I(n)) -I(SM4 1(n)) - I(SM2(n)) [(l1)+(21)]. By Def. 2.4-1, then,
1 M

U;.rI;'(q) -U 2.n 2(q) . Therefore, in either case,

(25) d is a Select and b is a data output arc

Match((A(b),S'O'p'), I, (b,S- ft)).

Hence, Z for OV [(15)+(16)+(18)+(19)+(24)+(25)+Def. 2.4-7]

Case II: d is a Const, Append, or Remove

(26) Let TOd) be the triple (C,U,G). Then in P', C labels a Copy, G

a sequencer, and U either an Assign, Update, or Delete

(27) There are tokens on all of d's input arcs and on none of its output

arcs in r1, so (2)+Def. 2.1-4

(28) There are tokens on C's input arc and on U's number-2 (and number-3)

input arcs in r' (4)

For every output arc b of C, U, or G in P1, either b is an input arc of

an Assign, Update, or Delete, or a sequencer, or there is an output arc

a of d in P such that b - A(a), so

(29) No output arc of C, U, or G holds a token in r' (27)+Def. 2.1-4

F C Is enabled In rl [(28)+29)], so

(30) 0 'VC' where VC- (C,(p~n)), p~dom n1 and nENj, is a firing sequence

starting in S' Ind. hyp. W+Def. 2.3-1

There is a token on U's ntamber-l input arc in S' 0'qC, so U is enabled

[(28)+(29)+(30)j, and so

(31) 0'CpUp, where VU - U, is a firing sequence starting in S' (30)

There are tokens on both of G's input arcs in S'Ov~U so G is enabled

[(29)+(3Q)+(31)1, and so

-493-

(32) eG'PCuOG, where -G G, is a firing sequence starting in S' (31)

(33) R(9qp) - R()pCpqpG is a firing sequence starting in S'

(30)+(31)+(32)+Alg. 3.4-2

The only number-1 output arc of C is an input arc of U, so the

only write pointer output by any of the firings jC, U'(p or tp is input

by @U; i.e., W for f [(33)+ind. hyp. W].

Since none of (C, tU, or 9 is a Select firing, X for ft [(33)+(26)+

ind. hyp. X1.

For every number-i input arc of an Assign, Update, or Delete, or

sequencer in P' on which a token is placed by one of (C* %, or TG in

R(99), that token is removed by a subsequent one of those firings. Hence

Y for 09 find. hyp. Y].

(34) Let a be the number-1 input arc of d. Let p1 (p') be the value of

the token on arc a (A(a)) in r1 (q1). Let m1 - 1I(pl) and

m - (p'). Then Uj.m _U1 .m1 (3)

(35) SM.,(=) - (v, (sln l),...,(sj ,nj)) iff

SMH(M) - {v, (slZ(nl)),...,(sJ,I(nj))} (34)

(36) Let p' be the value of the token on C's output arcs in S'-G'C, and

let m' f2(P2). Then p' was output by Oc, and letting the heap in

SI.6wCv be (N3,nSM3), SM(u4) SMI(ml) (34)+(30)

(37) pi is the number-l input to cpU and the transmitted input of

(36)+(31)+(32)

(38) Let P2 be the value of the token on d's data output arcs in r2 9

and let m2 = f2(P2). Define I
+ to be IU{(M2 ,M)). Then

SM(m) - {v, (alZ+(nl)),...,(BjI+(n) . (36)+(35)

(39) For any control output arc b of d, A(b) is a control output arc of U

-494-

The value of the token on b in S8or depends on the value and set of

selectors in SMf(u 1) [(34)], and the value of the token on A(b) in

S1e0 (Puc hence in 5O* 0t "c.p&&, depends in the same way on

'(17'(p')) - SM(m') [(26)+(39)+(37)]. Therefore,

(40) For every control output arc b of d, TV(br 2) TV(A(b),r1)(35)+(38)

Every output arc of G holds a token of value p2 in r; [(37)+

Def. 3.2-2]. Every output arc of C which is not an input arc of U or C

holds a token of value p in r [(36)+(33)]. For every data output arc

b of d, A(b) is either an output arc of G or an output arc of C which

is not an input arc of U or C [(26)]. Therefore,

(41) b holds a token of value P2 in r2' A(b) holds a token of value p

in r ' and '2(P2) - (38)

(42) nI C I]2 and VnEN2 , n~m2 - SM2 (a) - SM1(n) (38)

(43) The only firing among 9C, 0u , and 90 which changes SM is (pU, so

r1i c nl,, and VnENi, n#sm - Smi(n) - SMj(n) (37)+(36)

(44) SM2(m2) is created from SM1 (m1) by the firing (P of d, and SM2(m)

is created from SMj(m') by the firing fP of U (38)+(37)+(36)

Letting a2 (a3) be the number-2 (number-3) input arc of d, A(a2) (A(a3))

is the number-2 (number-3) input arc of U [(26)], so

(45) (p and (pU have equal number-2 inputs, and for their number-3 inputs,

P3 and p 3" U.fl(p) U U1.fl1(P3) (3)

(46) d is a Coast - SM2(m2) - {v', (slnl),...,(Bj,nj)), where v' is

P'Is number-2 input [(44)] A 9U is an Assign firing with v' as its

number-2 input [(26)+(45) I -

SM (m) - (v', ([(44)]

(47) d is a Remove -SM 2(M2) SMi(mi)-{(sini)}. where aSi isqO's

nuaber-2 input ((44)] A pUis a Delete firing with a, as its

Inumber-2 input [(26)+(45)] -a SM2(,n2) - SMH(m') - '(i- (ni)))

(38)+(44)

(48) d is an Append = SM 2 (M 2) SM 1(ml)U{(sj1l(p3))1, where s (p3) is

sP' number-2 (nuuzber-3) input [(44)] A U is an Update with number-2

input s and number-3 input p' where U [(P (26)4-
3 ~ 1"'l(') 1 U1.fl1(p3)

(45)] SM '(m2) - SM3(m)ufs,1rlj(P;p)} [(42)+43)+(44)]

SH2(m= -sM'(m)u{(s,4- (rI2(p 3)))} [(38)]

(49) SM(U N' (H(m) (35)+(38)+(46)+(47)+(48)

(50) Let b be any arc of P. b is an input arc of d -b is empty in r 2

A AMb is an input arc of C or U in P' [(26)] -A(b) is empty in

r' ((33)]

(51) b has a token in r2and is not an output arc of d

TV(b,r 2 - TV(b,rl) A A(b) is not an output arc of C, U, or G

[(26)] TV(A(b),r;) - TV(A(b),rl') [(33)]

b has a token of non-pointer value in rl= TV(b,r 1 - w(A(b),rl) ((3)],

so

(52) b has a token of non-pointer value in r 2 =*Tv(b,r2) Tv(A(b)r)

(40)+(51)

(53) Let b be any arc which holds a pointer in r2 , and let p be that

pointer. b is not an output arc of d - b holds a token of value

p~ in rl, A(b) holds a token of value p' in r and rl, and

U~l, l,(p,) U1.r11(p) - rfl'(P') - IO1r2(p)) (51)+(3)+(38)+(42)+(43)

(54) b holds a token of value p in r., A(b) holds a token of value p'

in q and 17(P')2 (41)+(53)

-496-

(55) Let n be any node equal to or reachable from 1l2 (p) 2 -

S2 (1+(n)) - I+(SM2(n)) (49)+(38)

m s2 i not in N1, s0 for any n1ll, there is no a such that (s,m2) Is in

SM(n) [(38)+Thm. 2.2-1]; i.e., m2 is not reachable from any node in U2 ,

that is, every path containing m2 in U2 starts at m2 [Def. 2.2-2]. Thus,

(56) Every path in U2 not starting at m2 is a path in U1 (42)+Def. 2.2-2

(57) nim2 and b is not an output arc of d * p*p 2 A U1.rI{(p ') U .ll(p)

n is equal to or reachable from nl2 (p) in U2 , hence is equal

to or reachable from n 1 (p) in U1 - Skq(I(n)) - I(S (n))

(53)+(38)+(56)

(58) nom2 and b is an output arc of d -* p - P2 - n is reachable from

m 2t2 (P2) in U2 - n is reachable from ml - nl(p1) or possibly n

equals or is reachable from nl2 (P3) in V12

(38)+(46)+(47)+(48)+Def. 2.2-2

n 2 = Smj(I+(n)) - I+(SM2 (n)) [(57)+(58)+(43)+(38)+(42)], so for

any node n equal to or reachable from 112(p) in U2 ,

SH(I+(n)) - I+(SM2 (n)) [(55)]. Therefore, U .T2(p) U2.rl2(p) [(54)],

and so for any arc b in P, atch((A(b),S"R(ft)), I+ , (b,S'cp))

[(50)+(52)+(53)+(54)]. Hence, Z for ft [Def. 2.4-7].

Thus it is proven inductively that

(59) 2' - R(2) is a firing sequence starting in S',

(60) there is no token on any number-1 input arc of an Assign, Update,

Delete, or sequencer in S"-', and

(61) S"2' simulates S2..

(62) No actor Is enabled in S'2 Def. 2.3-1

I
-497-

2' is not halted - there is some actor d' which is enabled in S'.2'

[Def. 2.3-11 - [d' is not a Copy, Update, Delete, or sequencer - there

is an actor labelled d in P such that T(d) - d' - d is enabled [(5)+(3)+

(4)4Def. 2.1-4]] - d' is a Copy, Assign, Update, Delete or sequencer

((62)] - letting (C,UG) be the triple in the range of T containing d',

U and G are not enabled [(60)+Def. 2.1-41 - C is enabled - there is a

token on Cts input arc in S',2' - for some input arc b of d, where

T(d) - (C,U,G), there is a token on A(b) in P' - there is a token on an

input arc of d in S'2 [(61)+Def. 2.4-7] - there is in S'2 a token on

an arc which is not a program output arc or a control arc [Def. 2.1-1]

- P is not well-behaved [Def. 2.3-2]. Therefore, R(2) is halted.

Q.E.D.

4

-498-

Appendix C

Proof of Lama 4.3-2

Lems 4.3-2 Let S be any initial standard or modified state of any program

P, and let 2 be any firing sequence starting in S. Then (S,2) is a

causal computation for Int(P).

Proof:

Key definitions: Def. 4.2-7 - causality; Def. 4.3-1 - DL, In;

Def. 4.3-2 - Int(P) - (St,/,IE); Alg. 4.3-1 - T)(S,2)

Prove first that co(S,O) is causal and that the destinations of the

transfers in w(S,2) are all distinct; do so by induction on jQ2.

Basis: 121 - 0. Then a(S,2) - X, so there are no entries in (4S,Q).

Furthermore, no execution has output entries in w(S,2), so o)(S',) is

causal.

Induction step: Assume that (o(S,2) is causal and that the transfers of

the entries in it all have distinct destinations for any 2 of length

a _ 0. Consider ft of length m+l, in which the last firing c is of the

actor labelled d. Let a - CO(8,) and p - O(SOp). (All initiations are

with respect to Int(P).)

(1) Let Ex(d,n) be any execution of which there is an input or an

output entry in . Then either d is the label of an actor in P

or d(DL, so dESt Def. 4.2-5

(2) a is a prefix of

(3) Let f be any entry in P, and let it be an output entry of

a - Rx(d,k). k - 0., dE{"ID""IT","F'"} - In((d)) = 0 e is

-499-

initiated in any computation Def. 4.2-6

f(a e's initiating entry precedes f in a, hence in [(2)+Ind. hyp.].

f is in P but not in a and k > 0 - the source in T(f) is Source(b,S,O)

for some arc b - dESt-DL and there are exactly k firings of d in 8

[(l)+(2)] -a there are In(l(d)) input entries to e in w(S,B) - a

[Lemma 4.3-l1] e's initiating entry is in a, hence it precedes f in

[(2)+Def. 4.2-61. Therefore, P is causal.

Let n be such that cp is the nth firing of actor c in 0(. Then there

is exactly one entry in P which is not in a for each token removed from

an input arc of c in the transition from S-0 to S-f, and the destination

in the transfer of each such entry is Dst(Ex(c,n),J), where the token

was removed from c's number-J input arc, and cESt-DL [(1)]. Since there

are fewer than n firings of c in 0, there are 0 ihput entries to Ex(cn)

in a; i.e., none of the entries in a has Ex(cn) in the destination of

its transfer [Lemma 4.3-1]. Since

(4) for any actor c, for each J, there is at most one number-j input

arc to c, and at most one token is removed from it in any

transition Defs. 2.1-1+2.1-5

the transfers of the entries in P-a have distinct destinations, although

each of them has Ex(c,n) in it. By induction hypothesis, the destinations

of the transfers of the entries in a are all distinct. Therefore, the

destinations of the transfers of the entries in p are all distinct.

Thus it is proven by induction that

(5) for any firing sequence 9, c,(S,2) is causal and the destinations in

the transfers of all entries in (S,) are all distinct.

j 1

-500-

(6) If 2 is not halted, then -(S,2) - co(S.2)

(7) Assume 2 is halted, and let a - c(S,2) and Y - r(S,2). Let f be

any entry in P and let it be an output entry of e - Ez(c,n).

n - 0 - is initiated in every prefix of " (3)

(8) a Is a prefix of

fee - e's initating entry precedes f in a, hence in [(9)+(5)]. f is in

P but not in a and n > 0 - the source in T(f) is Source(b,,.2) for some

arc b - cESt-DL and there are exactly n firings of c in 2 [(7)+Def. 4.2-5]

there are In(I(d)) input entries to e in o(S,2) - a [Lamma 4.3-1] -

a initiating entry is in a, hence it precedes f in p [(8)+Def. 4.2-61.

Therefore,

(9) P is causal (5)+(6)

(10) The destinations in the transfers of the entries in a are all

distinct, and each of them contains an execution Ex(d,k) where

d(St-DL and k > 0 (5)

(11) P is a followed by one entry for each arc b holding a token in S'2.

The destination in the transfer of each such entry is

Det(Ex(c,O),l), where c is given by

if b is the number-i program output arc of P, then c - (OD,i)

otherwise, b is the number-j input arc of an actor labelled d,

and c - (d,j) (7)

(12) c is In DL and OD is not the label of an actor In P

Each output arc of P has a unique index [Def. 2.1-1. Thus the composite

labels c in the target executions of all entries in p-a are distinct, and

so the destinations in the transfers of all those entries are distinct

from one another. [(11)+(12)+(4)]. Therefore.

-501-

(13) The destinations in the transfers of the entries in are all

distinct (10)+(12)

(14) Let e Ex(dk) be any execution of which there is an input entry

or an output entry in p. Then either d is the label of an actor

in P or d(DL, so dESt Def. 4.2-5

(15) dESt-DL - there are at most In(/(d)) input entries to e in

Lemm 4.3-1

(16) dE{"ID","IT","IF"} there are 0 input entries to e in there

are exactly In(/(d)) input entries to e in

(17) Otherwise, 1(d) - OA and, for J l, there are no entries whose

transfers have destination Dst(e,j) [(11)], and there is at most

one entry with destination Dst(e,j) [(13)], so there are at most

In(/(d)) input entries to e in P [Def. 4.2-5].

(18) VfEp, T(f) has source Src(Ex(ID,0),l) - V(f) is the value of the

token on the number-i program input arc of P in S, and VfEP, T(f)

has source Src(Ex(IT,0),l) - V(f) - true and T(f) has source

Src(Ex(IF,0),l) - V(f) - false, and VfEP, there is no k and I such

that T(f) has source Src(Ex(d,k),i) for any dEDL-"ID","IT","tF"}.

For any prefix 4 of 2 and for any i, tokens appear in the number-i

group of output arcs of actor d in the transition from S'A to S&p -

either p is a firing of d or d is a Select which is in a pool in S"A but

not in a pool in S.&p (Def. 3.3-9]. For any two distinct prefixes At@1

and a2 2 of ,, < and for any Select d, d is in a pool in

both Soa 1 and S'A2 but not in a pool in SIAif1 or in S*A202 - there is a

prefix So' of 2 with IA1(11 < I.'- - 1621 such that d is not in a pool

inS*' but is in a pool in S ' p' is a firing of d -A, p and &2

-502-

do not contain the same number of firings of d [Def. 3.3-9]. Therefore,

(19) For any two distinct prefixes A 1 and A2P2 of 2, any actor d, and

any i, tokens appear in the number-i group of output arcs of d in

both the transitions from S'A 1 to S'61I and from S*&2 to "'2

'Yl and A20 2 do not contain the same number of firings of d

Given a dESt-DL, k > 0, and i > 0, for every entry in the set {f[T(f)

has source Src(Ex(d,k),i)), there is a prefix &p of 2 containing exactly

k firings of d such that a token of value V(f) appears on an arc in the

number-i group of output arcs of d in the transition from SIA to SI&p

[Lemma 4.3-1]. There is only one such prefix &p of 2 containing exactly

k firings of d 1(19)], and all arcs in the number-i group of output arcs

of d get tokens of the same value in any single state transition [Defs.

2.1-5+3.3-91. Therefore,

(20) All entries in the set {fl T(f) has source Src(Zx(d,k),i)} have the

same value

(21) All entries in P whose transfers have a common source have the

same value (14)+(18)+(20)

Hence, p = 1 (S,2) is a causal computation for Int(P) [(9)+(13)-(17)+(21)+

Def. 4.2-61.

At

-503-

Appendix D

Proofs from Chapter 5

Lemma 5.2-6 Let a and p be any two causal computations for the same

interpretation Int - (St, I,IE) such that either a is a prefix of p or

is SOE-inclusive of a, and

(1) for any pointer p, p is the value of the output entries in P of a

Copy execution C - the first entry in P vith value p is an output

entry of C.

Let e be any structure operation execution initiated in a wrt Int. Then

for any Assign, Update, or Delete execution A, e is in R(A) in P iff

e is in R(A) in a only if A is initiated in a.

Proof:

Key definitions: Def. 4.2-6 - initiated; Def. 5.1-4 - access history;

Defs. 5.1-5+5.1-7 - durations; Defs. 5.1-6+5.1-8 - reaches;

Def. 5.2-8 - SOE-inclusive

Proof is by induction on the number of structure operation executions

initiated in any prefix of a. Induction hypothesis is that the Lemma is

true of each such execution e initiated in a prefix of a containing the

initiating entries to n such executions. (All initiations are wrt Int.)

Basis: n - 0. Vacuously true.

Induction step: Assume that the Lemma is true for any prefix of a in

which there are n structure operation executions initiated, and consider

prefix y in which there are n+l.

-504-

(2) Let e be any structure operation execution initiated in a, and let

e' be any other structure operation execution. Let the label in

e be d and the label in e' be d'. There there are In(I(d)) input

entries to e in a.

(3) a is a prefix of e' is initiated before e in p iff there is

a prefix 8 of P containing In(/(d')) input entries to e' but fewer

than In(/(d)) input entries to e iff there is a prefix 6 of a

containing In(I(d')) input entries to e' but fewer than In(I(d))

input entries to e iff e' is initiated before e in a (2)

(4) e' is initiated before e in P ifff el is initiated before e in a

(by definition if p is SOE-inclusive of a) (3)+(2)

(5) a is a prefix of p all input entries to e in p are in a (2)

(6) For any structure operation execution e initiated in a and any

integer J, V(Enta(ej)) - V(Ent (eJ)) (2)+(5)+Def. 5.2-8

(7) Let e and e' be any two distinct structure operation executions

such that e is initiated in a. For any pointer p, Ent (e'.l)

precedes Ent (el) in HO iff e' initiates before e in p and

V(Ent P(e',l)) - V(EntP(el)) - p iff e' is initiated before e in a

[(2)+(4)] and V(Ent (el)) - V(Ent (el)) - p - V(Ent (e',l)) =
a PP

V(Ent (e',l)) [(6)] iff Ent (el) precedes Ent (e',l) in Ha
a a a P

(8) Assume that either Ent (e',l) does precede Ent (e,l) in HP or

Enta(e',l) does precede Ent (e,l) in Ha . Then e' is initiatedaa p

before e in either a or

(9) e' is initiated in both a and p (8)+(2)+(4)

(10) e! is in APS in a iff e' is in APS in p (9)+Def. 5.1-5

(11) For every Update or Delete execution U initiated in a, e' is also

-505-

an Update or Delete execution - V(Ent a(e',2)) - V(Ent a(U,2)) iff

V(Ent (e',2)) - V(Ent (U,2)) [(9)+(6)]

(12) For any Update or Delete execution U initiated in a, e' is in SPS(U)

iff e' is an Update or Delete execution initiated in a and

V(Ent a(e',2)) - V(Ent (U,2)) [Def. 5.1-7] iff e' is an Update or

Delete execution initiated in P and V(Ent (e',2)) - V(Ent (U,2))

[(9)+(11)] iff e' is in SPS(U) in

(13) Let e - Ex(d,k) be any structure operation execution initiated in y.

Then there are In(/(d)) input entries to e in y, hence in a, so

e is initiated in a

(14) For any pointer p, Ent (el) is in HP and p is the value of the

output entries in P of a Copy execution C - V(Ent (el)) = p

(15) A the first entry in P with value p is an output entry of C (1)

by causality, the initiating entry of C strictly precedes the first

entry in p with value p [Def. 4.2-7] m the initiating entry to C strictly

precedes Ent (el) [(14)]; i.e., C is initiated before e in

(16) * C is initiated before e in a (13)+(8)

- C is initiated in a prefix of a in which there are fewer than n+l

structure operation executions initiated [(13)]

(17) for any Assign, Update, or Delete execution A, C is in R(A) in

iff C is in R(A) in a only. if A is initiated in a [ind. hyp.]

Ent (C,l) is in duration D(A) in P iff Enat (C,) is in D(A) in a
Pa

only if A is initiated in a

(18) Ent (e,l) is in HP and p is the value of the output entries in p ofPp

a Copy execution C - [a is a prefix of P -- EntP(el) is in a

[(13)+(2)+(5)] - there is an output entry of C in a with value p

-506-

[(14)+(15)1] and [P is SOE-inclusive of a = C has output entries

in a [(14)+(16)] a those entries in a have the same value p as

the output entries of C in P [Def. 4.2-51] - p is the value in a

of the output entries of a Copy execution C [Def. 4.2-6]

(19) e is initiated in (13)+Defs. 4.2-6+5.2-8

(20) For any pointer p, Enta (el) is in Ha and p is the value of the
p

output entries in a of a Copy execution C - V(Ent a(el)) - p A

by causality, C is initiated in a [Def. 4.2-7] A there is an entry

f in a such that T(f) has source Src(C,l) or Src(C,2) and V(f) - p

[Def. 4.2-5] = Ent (e,l) has value p [(13)+(6)] A there is an entry

g in P such that T(g) has source Src(C,l) or Src(C,2).and V(g) - p,

whether a is a prefix of P or P is SOE-inclusive of a -Ent (el)

is in HP [(19)] A p is the value of the' output entries in P of a
p

Copy execution C [Def. 4.2-5] - for any Assign, Update, or Delete

execution U, Ent (Cl) is in D(U) in P iff Enta (C,l) is in D(U) in

a only if A is initiated in a'[O.4)+(17)]

(21) For any Assign, Update, or Delete execution A, Enta (e,l) is in D(A)

in a iff for some pointer p, either

(21a) Ent (A,l) precedes Ent (e,1) in H and every entry which precedesa a p

Ent (e,l) but does not precede Ent (A,l) in H a is not in APS (ora a p

(SPS(A)), or

(21b) every entry which precedes Ent (el) in H a is not in APS (or SPS(A)),
a p

p is the value of the output entries of a Copy execution C in a,

and Enta (C) is in D(A) in a

iff either Ent (Al) precedes Ent (el) in HP and every entry which

precedes Ent (el) but does not precede Ent (Al) in HP is not in
SP p

-507-

APS (or SPS(A)) [(7)+(8)+(l0)+(12)] or every entry which precedes

Ent (e,l) in Hp is not in APS (or SPS(A)), p is the value of the

output entries in P of a Copy execution C, and Ent (Cl) is is D(A)

in P [(8)+(10)+(12)+(20)+(14)+(17)+(18)] iff Ents(e,1) is in

D(A) in P

Ent (e,l)ED(A) in Ent a(el)ED(A) in a - (21a) or (21b) [(21)].

(21a) = A is initiated in a. (21b) - C is in R(A) in a - A is initiated

in a [(21b)+(20)]. Therefore

(22) Ent (eI)ED(A) in P - Enta (e,l)ED(A) in a - A is initiated in a

(23) - V(Ent a(A,2)) - V(Ent (A,2)) A V(Enta (e,2)) - V(EntP(e,2)) (13)+(6)

(24) For any Assign, Update, or Delete execution A, e is in R(A) in P

iff e and A are executions of one of a few prescribed combinations

of operations, Ent (e,l) is in D(A) in P, and [A is an Update or

Delete and e is a Select, Update, or Delete - V(Ent (e,2)) -

V(EntP(A,2))] iff e and A are executions of one of a few prescribed

combinations of operations, Ent (e,l) is in D(A) in a [(21)] and

[A is an Update or Delete and e is a Select, Update, or Delete

V(Enta (e,2)) - V(Enta (A,2))] [(22)+(23)] iff e is in R(A) in a

e is in R(A) in a Ent a(e,l)ED(A) in a - A is initiated in a (24)+(22)

A
Lemma 5.2-7 Let S (r,U) be any initial standard state for an LS program

P, and let fpbe any firing sequence starting in S ((p is the last firing).

Let a - i(S,e) and p - t(s,9). Let f be any entry in P but not in a

whose value is some pointer p. If f - EntP(el) for some execution e,

then for any other execution e', f is in duration D(e') in P iff D(e')

extends to the end of H Furthermore, e X m no durations extend to~p

-508-

the end of Ha for any pointer p.
p

Proof:

Key definitions: Def. 5.1-4 - access history; Defs. 5.1-6+5.1-8 - reach;

Defs. 5.1-5+5.1-7 - duration; Def. 5.2-5 - CC

Proof is by induction on the length of 0. Let Int(P) be (St, /,Ig).

Basis: tel - o.

(1) a = X and P = r(S,e) consists of input entries to a single execution

Aig. 4.3-1

(2) If there is no pointer-valued entry Entp(e,) in P-a, then the

Lemma is vacuously true. Assume therefore that there is an entry

f - Entp(e,1) for some execution e, and that V(f) is pointer p

(3) For any execution e' - Ex(dk), f(D(e') in P - 1(d) is Assign,

Update, or Delete and either

(3a) f- Rntp(el) and Ent (e',l) are distinct entries in HP , orpp
(3b) p is the value of the output entries in P of a Copy execution C (2)

(4) - In(I(d)) > 0 Def. 4.3-1

(3a) - e' # e and e' is initiated in P - there is an input entry to el

in P [(4)+Def. 4.2-6]. (3b) - EntP(Cl) strictly precedes

f - EntP(e,l) in p [(2)+Lena 5.2-3]; i.e., there is an input

entry to C~e in P. Therefore, fED(e') - there are input entries

to two distinct executions in P [(3)), so by (1),

(5) For any execution e', f is not in D(e') in P

(6) a is a computation for Int(P) Lemia 4.3-2

(7) For any execution el - Rx(d,k), and any pointer p, D(e') extends

to the end of H 1(d) is Assign, Update, or Delete, and either
p

-509-
a

(7a) Ent a(e',l) is in Ha, or (7b) there is a Copy execution C such that

C is in the reach R(e') in a [Def. 5.2-6]. (7a) - e' is initiated in a

wrt Int(P) [(6)]. (7b) - Ent (C,l) is in duration D(e') in a - Ent (C,1)

is in an access history in a - C is initiated in a. Hence, for any

execution e', D(e') extends to the end of Ha = there is an execution of

an operation having non-zero input arity initiated in a [Def. 4.3-1]

there is an entry in a [Def. 4.2-6]. By this and (5),

a
For any execution e', fED(e') and D(e') does not extend to the end of H

p
Induction step: Assume that the Lemna is true for any Oq in which

0 5 161 5 n, and consider O8p in which 101 - n+l. Let the final firing p

be the kt h firing of the actor labelled d.

(8) P is a followed by input entries to Ex(d,k), followed possibly by

more entries AMg. 4.3-1

(9) Assume that there is an entry f in P-a whose value is pointer p,

and that f - Ent (e,l) for some execution e. Then e - Ex(d,k) (8)p

(10) Ha is a prefix of HP, f is in HP, and for every entry Ent(e',J)
p p p

in Hp-Ha, e'*e - e' is not a structure operation execution
p p

(8)+Leia 5.2-5

(11) Let NAR (NAR') be the node activation record derived from 0 and a

(e~p and P). Then ran NAR is consistent with U Lema 5.2-2

(12) Let CCa (CC) be the Creating-Copy function corresponding to NAR

(NAR'). CC a(p) is defined - NAR(CC a(p)) - (p,n) for some n

(13) - CC (p) is initiated in a Def. 5.2-4

A (p,n)Eran NAR [Def. 5.2-1] - NAR'(CCP(p)) - NAR(CCa(p)) - (p,n) [(12)+

Lema 5.2-5] A p.domrl in U [(1l)+Def. 5.2-3] -

(14) CCP(p) = CCa(p)

......

-510-

(15) A the first entry with value p in 0 (if any) is an output entry

of 0C(P) and is strictly preceded by Ent (CC (P),l)

(ll)+(12)+Lemma 5.2-3

(16) In summary, CC a(p) is defined - p is the value in p of the output

entries of a Copy execution CC (p), which is initiated in aa

(17) There is a Copy execution C whose output entries in P have value p

CC (p) is defined, C - CC (p), and Eut (Cl) strictly precedes

the first entry in P with value p, which is an output entry of C

(l1)+(12)+Lemma 5.2-3

a is a prefix of P, and both are causal computations for Int(P) [(8)+

Lesa 4.3-21, so

(18) For any Copy execution C Initiated in a and any other execution e',

C Is in the reach R(e') in a iff Cis in R(e') in P (17)+Lenma 5.2-6

(19) For any execution e', CC,(p) is defined and CCa(p) is in R(e') in

a - p is the value of the output entries in P of a Copy execution

C, and C is in R(e') in P [(16)+(18)] - p is the value in p of

the output entries of a Copy execution C, and EntP(C,1)ED(e') in P

(20) There is a Copy execution C whose output entries in p have value p

Ent (C,1l) strictly precedes Ent (e,1), so C~e (17)+(9)

(21) A MAR'(C) - (p,n) for some node n (17)+(12)

(22) - Ent3(Cl) is in a - C is initiated in a (8)+Def. 4.2-6

-NAR(C) - NAR'(C) - (pn) for some n [(21)+Lemma 5.2-5]

(23) -* CC (p) is defined and equals C
a

(24) For any execution e', there is a Copy execution C whose output

entries in p have value p and Ent P(C,1)(D(e') in p - there is a

Copy execution C whose output entries in p have value p and

-511-

CER(e') in CC (p) is defined and CER(e') in a

(20)+(23)+(22)+(18)

Ent (e',I) precedes f-= Ent (e,1) in H and e' is a structure operation
p

execution - Ent (e',l) is in H a [(10)], so
p

(25) e' - Ex(cn) is a structure operation execution and either Ent (e',l)
P

precedes f in H or Ent (e',l) is in Ha = e' is initiated in a Ap a p

In(/(c)) > 0 [Defs. 4.3-2+4.3-1+2.1-5] - Ent (e',l) - Enta(e',l)

(8)+Def. 4.2-6

For any Assign execution e', D(e') extends to the end of Ha iff
p

a. Ent a(e',l) is the last input entry to an Assign execution in H
ap

or b. there is no input entry to an Assign execution in Hap, CC a(p) is

defined, and CC (p)ER(e') in a [Def. 5.2-61 iff
a

a. Ent (e',l) is the last input entry to an Assign execution

preceding f in HP [(10)+(25)],
p

or b. there is no input entry to an Assign execution preceding f in

HP there is a Copy execution C whose output entries in P have
p

value p, and Ent (C,1)ED(e') in P [(10)+(19)+(24)]

iff fED(e') in P.

Replacing "input entry to an Assign execution" with "number-I input

entry to an Update/Delete execution having a particular selector input"

in the above paragraph yields a proof that:

For any Update/Delete execution e', D(e') extends to the end of K
p

iff fED(e') in P.

-512-

Theorem 5.2-1 Let S - (r,U) be any initial standard state for an LBS

program P, and let 2 be any firing sequence starting in S. Let co - rj(S,2)

and let MAR be the node activation record derived from 2 and Co. Then the

heap determined by co from U and IM is defined and is identical to the

heap.-in the state S*2.

Proof:

Key definitions: Def. 2.2-5 - structure operations; Alg. 4.3-1 - (S,2);

Def. 5.2-1 - node activation record; Def. 5.2-5 - Creating Copy function;

Def. 5.2-6 - durations extending to the end of an access history;

Def. 5.2-7 - heap determined by co from U and NAR

Since co is a computation for Int(P) [Lemma 4.3-2] and MAR is compat-

ible with &) and ran NAR is consistent with U [Lemma 5.2-2], the heap

determined by o) from U and NAR is defined [Def. 5.2-7]. Prove the rest

of the theorem by induction on the length of 2. Let U - (N 0,nl0SM0).
Basis: 121 - 0. Let (Nf,SM) be the heap determined by ca - (S,Q).

(1) S'2 - S, so the heap in S'9 is (Nono,SMO) Def. 2.3-1

There are no entries in wo. Since In(Copy) - 1, there are no Copy execu-

tions initiated in w [Defs 5.1-1+4.2-6]. Since ran NAR is empty, n - n0

and N - No [Def. 2.2-1]. Let (p,n) be any pair in n. Then no durations

extend to the end of H [Lemma 5.2-7]. SM(n) - SNO(m) where, since

(p,n)E O , m - n. Therefore, (N,f,SM) is the heap in S*S [(1)].

Induction step: Assume that the Theorem is true for any 2 of length

n _ 0. Consider firing sequence fp of length n+l, in which the last

firing V is the k firing of the actor in P labelled d. Let a -(SO)

and P - i(S,f), and let (NJ1,SM) and (N' ,',SM') be the heaps in S'8

-513-

and Sp respectively.

(2) p is a followed by m input entries to an execution e = Ex(d.k),

where a is the number of tokens removed by V, followed possibly by

input entries to executions Ex(c,i) where c is in DL Def. 4.3-1

(3) Any execution Ex(cn)*e initiated in P but not in a has input

entries in P-a, and so is not a structure operation execution

(2)+Defs. 4.2-6+4.3-2

For any pointer p, H is a prefix of H, any input entries to e
p p

which have value p are in HP and for any entry Ent(e' ,J) in Hp-1p

e'#e - e is not a structure operation execution Lemma 5.2-5

Consider first the consequences of 9's not being a firing of certain

types of actors. Let NAR (NAR') be the node activation record derived

from e and a (p and P) given Int(P). Let (N afa,SM) and (N ,,flSM)

be the heaps determined by a from U and NAR and by P from U and NAR'.

(5) Ha 1 and Na -N ind. hyp.

(6) p is not a Copy firing = N' - N and H' - n [Def. 2.3-1] A the set

C of Copy executions initiated in a equals the set of Copy

executions initiated in 0 [(3)] - for any CEC, NAR' (C) - NAR(C)

-ran NAR' - ran NAR [Lemma 5.2-5+Def. 5.2-4] - N' -N = Na

andfn' - n- = n (5)]
a

(7) NAR' is a node activation record and ran NAR' is consistent with U

Lemma 5.2-2

Hence, for any pointer p, there is at most one Copy execution C such

that XAR'(C) has p in it [Def. 5.2-3].

(8) For any n, (p,n)H-%0 - 3Copy execution C: NAR(C) - (p,n) and C is

initiated in a [(5)] . NAR'(C) = (p,n) (Leama 5.2-5]

-514-

(9) Let CCa (CC) be the Creating-Copy function corresponding to MAR

(MAR'). CC (p) is defined - there is an n such that NAR'(CC(p))

is defined and equal to (p,n) - (p,n)Ef 0 [(7)+Def. 5.2-3]

(10) CC (p) is defined - there is a Copy execution C and a pointer nak
such that NAR(C) - (p,n) * C is initiated in a [Def. 5.2-41 -

NAR'(C) - (pn) [Lemma 5.2-5] -CCP(p) is defined

(11) (p,n)Gf and CC (P) is defined - (p,n)e- 0 [(9)]

- 3Copy execution C initiated in a and NAR(C) - NAR'(C) - (pn) [(8)]

(12) EntP(Cl) is in a [(2)+Def. 4.2-6]

(13) A CC (p) is defined and equal to C - CC (P)

(14) - Ent a(CCa(p) 1) - Ent (CCP(p),l) [(12)]

Both a and p are causal computations for Int(P) (Lemma 4.3-21 and a is

a prefix of [(2)]. For any pointer p, p is the value of the output

entries in of a Copy execution C - the first entry in P with value p

is an output entry of C [Lemma 5.2-3]. From these

(15) For any (p,n)(fl such that CC (p) is defined, and for any Assign,

Update, or Delete execution A, CC (p) is in reach R(A) in P iff

C a(p) is in R(A) in a (ll)+(14)+Leima 5.2-6

Consider now the case that for some (p,n)(EI, T is not an Assign firing

which removes a token of value p.

(16) SH'(n) has the same value as SM(n)

Also, a is not an Assign execution with V(Ent (el)) - p [(2)], so e

is not an Assign execution with Ent (e, 1) in HfP. Therefore, from (4),

(17) Ha is a prefix of HP and there are no Assign execution input entries
p p

In HPp•~ p

-515-

(18) For any Assign execution A, D(A) extends to the end of UP either
p

Ent (A,1) is the last input entry to an Assign execution in HP , or-P p
there is no such entry, and CC (p) is defined and is in R(A) in P

either A~e and Ent a(A,l) is the last input entry to an Assign

execution in Ha ((17)], or there is no such entry in Ha [(17)] and
P P

CCa(p) is defined and is in R(A) in a [(11)+(13)+(15)]

(19) For any Assign execution A, D(A) extends to the end of HP * A#e
P

and D(A) extends to the end of Ha [(18)], and the value in SM (n)
p P

is V(Ent (A,2)) - the value in SM (n) is V(Ent (A,2)) - the valuep

in SM P(n) and SM (n) are the same [(2)+(3)]

(20) (pn)GI-n 0 = Ent a(CCa (p),l) - Ent (CC (p),I), and that entry is in

a [(11)+(14)+(12)] - V(Ent (CC (p),I)) is dynamically descended

from a pointer q in P only if V(Ent a(CCa (p),l)) is dynamically

descended from q in a -[(2)+(3)+Def. 5.1-9]

(21) There is no Assign execution A such that D(A) extends to the end of
HP . there is no Assign input entry in HP and, even if CC (p) is

defined, there is no Assign execution A such that CCP(p) is in

R(A) in P = there is no Assign input entry in Ha [(17)] and even if
p

CC a(p) is defined, there is no Assign execution A such that CC (p)a a

is in R(A) in a [(10)+(15)] = there is no Assign execution A such

that D(A) extends to the end of H a . if (p,n)E0, the value inp

SL(n) and the value in SM (n) are both equal to the value in

5% (n), and if (p,n)Cf-n0, the value in SM (n) is the value in

SM (m), where (q,m) is that unique pair in n0 such that

V(IntP(CC (p),l)) is dynamically descended from q in P, in which
case, the value in SM (n) is also the value in SM0 (m) [(20)]

a

-516-

I.e., there is no Assign execution A such that D(A) extends to the

end of NO- the value in SM (n) equals the value in SM (n)
pP a

(22) For all (p,n)Efl, p is not an Assign firing which removes a token

of value P -a the value in SW4(n) equals the value in SM (nW

(16)+(19)+(2l)+ind. hyp.

Replacing "Assign firing (execution)" with "Update/Delete firing

(execution)" in (16)-(21) yields a proof of

(23) For any (p,n) el and selector sEZ, V is not an Update/Delete firing

with pointer input p and selector input s there is a pair (s,r),

for some node r, in SM (n) iff (s,r) is ini SM'(n).

There are now four cases to consider, based on the type of actor of which

(p is a firing.

Case I: p is not a firing of a Copy, Assign, Update, or Delete.

N' -NPI n' -11P and IT' - n7 [(6)3. For all (pMnEH',

SM Wn - SM'(n) [(22)+(23)). I.e., (K r ,SM)-(N'I',SM')

Case 11: (p is an Assign firing.

(24) H~ N's n 7', and N' - N (6)

(25) Let p be the pointer input to cp, and let n -17(p). Then for all

ajinEN'. SpM)W - SM' (a, and S14O(n) has the same ordered pairs as

SM'(n) (24)+(22)+(23)

The value in SM'(n) is equal to v, the value of the token removed from

d's number-2 input arc by p [(25)]. e is an Assign execution, V.(It (C.1))

is p, and V(Ent (A,2)) - v [(2)+(23)]. Ent (e~l) is the last input entryJ

to an Assign execution In NO (4)], so duration D(e) extends to the end

of NO. Therefore, the value In SM (n) is v. Hence
pp

-517-

if (p is an Assign firing, then (N ,n,SMP) - (N' ,n',SM').

Case III: p is an Update or Delete firing

(26) N inN', n ri', N' - N, and ' -n (6)

(27) Let p be the pointer input to 9, let n - 1(p), and let s be the

selector input to (p. Then for all m~nEN', SM (m) - SM'(m), SM (n)

has the same value as SM'(n), and for all s'$s, there is a pair

(s',r), for some node r, in SM (n) iff (s',r)ESM'(n) (26)+(22)+(23)

(28) e is an execution of the same action of which 9 is a firing,

V(Ent (el)) - p, and V(Ent (e.2)) = s [(2)+(27)]. EntP(el)

is the last input entry to an Update or Delete execution with

selector input s in H [(4)], so D(e) extends to the end of HP
p p

(29) (P is a Delete firing - there is no pair in SM'(n) with s in it

(27)] and e is a Delete execution, so there is no pair in SM (n)
P

with s in it [(28)], from which, SMP(n) - SM'(n) [(27)]

(30) If (p is an Update firing, let q be the pointer it removes from d's

number-3 input arc. Then the pair (s,Hr(q)) is in SM'(n), and is

the only pair containing s in SM'(n) [(27)], and e is an Update

execution with V(Ent (e.3)) U q [(2)], so the pair (s,l (q)) is

in SM (n) and is the only pair containing s in SM (n) [(28)];

i.e., the pair (s,11(q)) is in SM (n) [(26)]. Therefore,

SM P (n) U SM'(n) [(27)]

Hence, if V is either an Update or a Delete firing,

(N , '/1PSIp) U (N' ,T',SM') [(26)+(27)+(29)+(30)].

Case IV: (p is a Copy firing.

(31) For all (p,n)4I, SMP(n) - SM'(n) (22)+(23)

(32) Let (p be (d,(p,n)). Then 11' UHU{(pn)} and N' U NU{n} Def. 2.3-1

-518-

Let Cbe the set of Copy executions initiated in a. Then the set of Copy

executions initiated in P is C'J{e}. [(2)+(3)]. For all CEC,

NAR'(C) - NAR(C) [Lemma 5.2-5]. Hence ran NAR' - ran NARLIXAR'(e). From

this and

(33) NAR'(e) is the ordered pair in the kth firing of d in 09, which is

the ordered pair in p, which is (p,n) (2)+(32)+Def. 5.2-4

it is seen that ri, = f0Uran NAR' - %Uran NARU{(p,n)} = flaU{(p,n)}.

Then, N - a U{n}. Therefore,

(34) N - N' and ri - nI' [(32)+(5)]

(35) Let q be the value of the token removed by (p, and let m - fl(q).

Then SM'(n) - SM(m) (32)

(36) CC (p) is defined and equals e (33)

EntP(el) strictly precedes the first entry, if any, in P with value p

[(36)+Leuma 5.2-31, so there is no entry in a with value p [(2)]. Thus

if there is an entry with value p in P, it is not an input entry to a

structure operation execution [(3)]. Therefore,

(37) HP contains no input entries to structure operation executions (3)
P

(38) Ent (e,l) is in P but not in a and its value is q (2)+(35)

Therefore,

(39) For all executions e', duration D(e) extends to the end of HP
p

iff e(R(e') in P [(37)+(36)] iff Ent (e,l)ED(e') in P [Defs. 5.1-6+
a

5.1-8] iff D(e') extends to the end of Ha [(38)+Lemma 5.2-7]q

Since (p,n)VI 0 [(7)+(33)],

(40) Letting r be the unique pointer in dou I0 from which

q - V(Ent (CC (p), l)) is dynamically descended in P, SN (n) depends

-519-

on SM0 (0 (r)) and on the input entries to the executions whose

durations extend to the end of HO (38)+(36)
p

(41) (q,m)f [(35)+Thm. 2.2-1]. (q,m) 0 = q - r [(40)+(35)].

(42) (q,m)rT 0 - (q,m)E- 0 [(41)] - r~q A CC (q) is defined and q is the

value of its output entries in P [(40)+Lemma 5.2-3] A

Enta(CCa(q),l) - Ent (CC (q),l), and that entry is in a [(11)+(14)+

(12)] - V(Ent (CC (q),l)) is dynamically descended in P from every

pointer except q from which q is dynamically descended in P

[(40)+Def. 5.1-9] = V(Enta(CCa(q),l)) is dynamically descended in

P from r - V(Enta(CCa(q),l)) is dynamically descended in a from

r [(2)+(3)+Def. 5.1-9] - r is the unique pointer in dom P 0 from

which V(Ent a(CC a(q),1))is dynamically descended in a [Lemna 5.2-4]

SM (m) depends in the same way on SM0 (%T0(r)) and On the input entries

to the executions whose durations extend to the end of H [(40)+(41)+(42)].q

The same executions' durations extend to the end of H
p and Ha, and their

input entries are the same in a and P [(39)+(19)+(2)+(3)]. Therefore,

SM P(n) = SMa(m) [(40)]. By induction hypothesis, SM a (m) SM(m). So

SM P(n) = SM'(n) [(35)]. Hence, (NI, =S
I (N',n',SM') [(34)+(31)+

(32)Q].

Q.E.D.

-520-

Theorem 5.3-1 For any two equal standard states S1 and S2 for the same

program P, and any two equal firing sequences 21 starting in S, and 2

starting in S2, S2 2 2 equals Sf21q. Furthermore, if I is the mapping

under which the conditions of each arc b in P match in S1 and $2, then the

mapping under which the conditions of b in S12'1 and $2"22 match is

IU{(ni,n 2) 1 3k: for 11,2, n, is the node in the kt h firing in i}.

Proof:

Key definitions: Def. 2.1-5 - non-structure operations;

Def. 2.2-5 - structure operations; Def. 2.4-1 - equal components;

Def. 2.4-2 - match

Proof is by induction on the length of 21"

Basis: 12I 11 - 0. Then 1221 - 0 [Def. 2.4-5]., so S2 .22 - S2 and

51'21 - S, [Def. 2.3-11. By hypothesis, then, S2"92 equals S1"2.
Induction step: Assume the Theorem is true if 21 is of length n _ 0, and

consider equal firing sequences 2 l' 1 and 2 p2 , starting in S, and S2'

where g 1qf1 is of length n+l and its last firing 91 is of the actor in P

labelled d.

(1) 22'P2 is also of length n+l and (2 is also a firing of d Def. 2.4-5

S2 *"2 equals S'1*1 by induction hypothesis, so

(2) There is a one-to-one mapping I such that, for each arc b in P,

Match((b,S2"22), I, (b,S 1 .2 1)) Def. 2.4-3

(3) If d is a gate actor, then the control token removed by 91 has the

same value as the control token removed by 92 (2)

(4) For each arc b in P, b has no token in S 1
2 191 iff either

b is neither an input nor output arc of d and has no token in S1*21 ,

-521-

b is an input arc of d from which ¢p removes an input token, or

b is an output are of T- or F-gate d and (p1 places no token on b

iff b is neither an input nor output arc of d and has no token in

S2.22 [(2)] or b is an input arc of d from which p2 removes a token

or b is an output arc of T- or F-gate d and (2 places no token

on b [(3)] iff b has no token in S2"22 2

At this point, It will be helpful to introduce the following notation:

For any state S of any program, and for any arc b of the program which

holds a token in S, denote by TV(b,S) the value of that token.

(5) For each arc b in P which has a token in S1 -2 1q 1 and is not an

output arc of d, TV(b,S 1'21 1) - TV(b,S 1 21) and

TV(b,S 2 22 2) - TV(b,S 2 .2 2) (4)

(6) TV(b,SI 21) is not a pointer -TV(b,S 2 "22) TV(b,S1 '21) [(2)]

TV(b,S 2 2 2 €2) - TV(b,S1"2 1P1) [(5)]

(7) For 1-1,2, let the heap in Si-21 be Ut - (Ni,rti,SMi), and let the

heap in Sf -2 o be U' - (!') For any arc b, TV(b,S 1 21)hep n i' i be U i (I, i I

is a pointer p1 * letting P2 a TV(bS 2"22), U2 "72 (p 2) _ U1 .fl,(Pl)

[(2)] - 1(f7l(pl)) - 12 (p 2), and, for any node n equal to or reach-

able from 1 (pl) in U,, SM2(I(n)) - I(SM1 (n))

(8) Let ql and q2 be the values of the number-1 input tokens to Pl and

92 respectively, and for iwl,2, let ai - F~t(qt). Then m2 w I(m1)

(7)

(9) For all (q,m)(11 , m u1 or Ol is not an Assign, Update, or Delete

firing- S '(m) - SM (M)

(10) For all (q,=)el such that m equals or is reachable from nl(p) for

any pointer p on an arc in S1.21 , m"f1 or (1 is not an Assign,

-522-

Update, or Delete firing 2 * I(m) or p2 is not an Assign, Update,

or Delete firing [(8)+(2)+(l)], and SM2(I(m)) - I(SM1 (m)) [(7)] -

SM2(I(m)) - S2I(m)) - I(SM 1(m)) - I(SMI(m)) [(8)+(9)]

(11) If SN(m1) - {v, (s 1 nl),...,(sjnj)}, then

SN2(m2) - {v, (SlI(n l)),..,(sj,I(nj))j (8)

(12) Let b be d's number-2 input arc (if any). Ol is an Assign firing -

SMI(m I) " iv', (s rnl),...,(s in)) where v' - TV(b,SI'21) [(11)]
is an Assign firing with TV(b,S 2" 2) = v' [(l)+(6)] -

sM (m2) = IV', (8I , I(n1),'..., (s j, I(nj)) } [(n)]

SH (m2) - I(SM (ml))

(13) (p is a Delete firing - SM (m1) is SM 1(ml) minus the pair with

selector s TV(b,S' 21) (if any) - 2 is a Delete firing and

TV(b,S 2" 2) - s [(1)+(6)] - SM (m2) is SM2(m2) minus the pair

with selector s (if any) o SM2(m 2) - I(SMI(m)) [(11)]

(14) lp is an Update firing - S (mI) - SMl(ml) with any pair having s

in it replaced by (s, 7l1(q)), where s - TV(b,S 1 1) and for c

d's number-3 input arc, TV(c,SIS"-1) - (2 is an Update firing,

TV(b,S 2 "2) - a, and TV(c,S 2 .2 2) - q such that n 2 (q) - M01 (qj))

[(1)+(6)+(7)] - SM2(m2) is SM2(m2) with any pair having s in it

replaced by (s,I011 (q))) - SM(m 2) - I(SMI(ml)) [(11)]

(15) n, s nl andf 2 c n2, (7)

(16) Let b be any arc which is not an output arc of d such that

TV(b,S 1 2(p 1) is some pointer pl. Then p1 is on an arc in SI"R,

and TV(b,S 2 "2 2) TV(b,S2"92) is a pointer P2 such that

I]lz(p)) - n2(p2) (5)+(7)

(17) I(l(pl)) - n(p 2) (15)+(16)

-523-

(18) For any pointer pEdom n1, n is any node reachable from ni(p) in U!

there is a chain of nodes rl,r 2,...,rk such that r, - n (p),
rk = n, and for l...,k-1, r is a successor of r in U,

ki+1 i i

[Def. 2.2-21 - there is a chain of nodes rl,r2,...,rk such that

rI n f1(p), rk = n, and for i=1,...,k-i, rilI is a successor of ri ,

unless there is some j such that rj - mI and (i is an Update firing,

in which case r = nl(qj) where q is the number-3 input to pl

and there is still a chain rj+l,... ,rk in which rk = n and for

i-j+l,...,k-1, ri+1 is a successor of ri in U1 [(15)+(9)+(11)+

(12)+(13)+(14)+Def. 2.2-2] - n is reachable in U1 from either

n (p) or nl(ql) where ql is on an arc in S1"oI [Def. 2.2-2]

(19) For any pointer p, p is on an arc in S or n1 (p) is in an

ordered pair in SM1 (n) for some node nEN1 = p~dom n1

Thin. 2.2-1+Def. 2.2-1

Let n be any node equal to or reachable from nI'(Pl) in UI. Then n is

equal to or reachable in UI from some node rl1(pj) where P1 is some

pointer on an arc in S 16 1 [(16)+(19)+(18)]. n m1 or (1 is not an

Assign, Update, or Delete - SM2(I(n)) - I(SMI(n)) [(10)1. n - i 1 and

(i is an Assign, Update, or Delete SMI(I(n)) - 1(SMI(n)) [(11)+(12)+

(13)+(14)). Therefore, U1..f(P 2) DUlr(Pl) [(17)]. From this and

(4)+(5)+(6)+(16),

(20) For any arc b which is not an output arc of d and has a token in

S1.2101 9 Hatch((b,S 2"*22), 1, (b,S 1 . 191l)) t

(21) For each arc b which is an output arc of d and has a token in

S the value v, - TV(b,S.-Qiv.) , for I1-,2, is output by j

(4)

-524-

(22) d is a p1 operator there is an input arc a of d such that

TV(a,SI.9i) - vi (3)+(21)+Def. 2.2-4

(23) d is a pl operator A V is non-pointer uv 2 = v 1 (6)

(24) d is a p1 operator A v1 is a pointer - i(nl(vl)) - nI(v 2) [(7)+(15)]

A since v 1 is on an arc in SI,21. for any node n equal to or

reachable from nf(v1) in U1, n equals or is reachable from iL(vl)

in U 1 ((21)+(15)+(19)+(18)], so SMI(I(n)) - I(SM,(n)) [(10)1

u2.n2(v2) N 1 .fl1(vl)

(25) v is non-pointer and d is not a structure or pI operator - v,

depends only on the type of actor d is and on the values on d's

input arcs in 5'*2, for i-1,2 A all those input arcs hold non-

pointer values - v a v 2 [(6)]

(26) v1 is non-pointer and i.,. not identically zero, and d is a

structure operator -, vI depends only on the type of d, the non-

pointer input to q,, and the value and set of selectors in

SMili(ql)), for i1,2 [(8)] 'vl - v2 [(6)+(11)1

(27) v is not a pointer - vI W v2 (22)+(23)+(25)+(26)

(28) v1 is a pointer and d is not a pI operator m d is a Select or Copy

(29) 91 is a Select firing with selector input s - v1 - qj, where the

pair (s, 11(q)) is in SNI(m1) [(8)1 - 02 is a Select firing with

selector input s and (s,(1Ol(q))) is In SM2 (m2) [(6)+(11)1 -

v2 = q2 where n 2 (q2) - I(fl1(qj)) A every node reachable from ril(ql)

in U' is reachable in U1 from T1 (q), hence from a1 [(15)+(19)+

(18)+(8)+Def. 2.2-21 - since q is on an arc in 512l , for every

node n equal to or reachable from T!l(v 1) in U

S-2(I(n)) [(SMI(n)) [(8)+(10)1 - Ui.fn(v 2) u u1 .n(v1)

-525-

(30) (I is a Copy firing 3(ql,n1): fl'-u'IU{(q,n 1) }, vI - ql, and

SM(n 1) - SMI(m 1) [(21)+(8)] A (2 is a Copy firing 3(q,n 2):

112 = n2 U{(q,n 2)}, v 2 = q2, and SM2(n2) M SM2 (m2) [(l)+(8)]

letting I' - IU{(n,,n 2)}, I'(rI(vl)) - fl(v 2) A since every

successor of nI in U' is a successor of m1 in U and no node's

content is changed, each node reachable from n in U1 is reachable

from m1 in U1 [(9)+Def. 2.2-2] - letting m be any node reachable

from nI in U1, mEN1 , so SM('(m)) - SM (I(m)) - I(S(m))

I'(SM{(m)) [(8)+(10)] A SM2(I'(n I)) - SM(n 2) = SM2 (m2) -

I(SMI(ml)) - I'(SM(nl)) [(8)+(7)] - U .Hr(v 2) Ull,(V l)

Therefore, v1 is a pointer and d is not a pI operator

I'
U2.n2(v2) V U1 .TIl(vz), where

I if 91 is not a Copy firing

I'- IU{(nln 2)}if 91 is a Copy firing (d,(q,,nl)) and

(P2 is a Copy firing (d,(qj,n2))

[(30)+(8)+(7)]. In sumary, then, for each arc b in P,

Natch((bS 2.2* o2), I', (b,S1 -2 el)) [(4)+(20)+(21)+(27)+(22)+(24)1; i.e.,

S 2 2 2 equals S 1 " 1p 1 [Def. 2.4-3].

Lema 5.3-4 Let S be any initial state for an LS program P, and let the

heap in S be (',SM). LetQbe any firing sequence starting in S, let co

be -(5,2), and let e be any execution of any structure operation (except

Copy). Let p be V(Ent(e,l)), let q be the unique pointer in dom n such

that DD (q,p), and let n - 17(q). Then the conclusions depicted in

Table 5.3-1 can be drawn about the values of e' output entries in ca.

-526-

Proof:

Key definitions: Def. 2.2-5 - structure operations; Def. 4.2-6 - initia-

tion; Def. 5.1-8 - reach; Def. 5.1-9 - dynamic descendancy;

Def. 5.2-7 - heap determined by a computation

(1) Let e be Ex(d,k) and let Int(P) be (St,1R). Then dESt-DL

Defs. 4.3-2+4.3-1

Let f be any entry such that T(f) has source Src(e,i) for any I. Then

there is a prefix O of 2, containing exactly k firings of d, such that

tokens of value V(f) appear in the number-i group of output arcs of d at

the transition from S'e to Seq [(1)+Lemma 4.3-1]. Therefore,

(2) (p must be the kth firing of d in a Def. 2.1-5

(3) Let a be 1(S,6) and let NAR be the node activation record derived

from 0 and a. Then the heap determined by a from the heap in S

and NAR, (NIT ,SM)), is defined and is identical to the heap in

sIe Thu. 5.2-1

(4) Let p be (Sft). Then g - EntP(e,1) is the first entry in P which

is not in a, p is the number-1 input to V, and there are i input

entries to e in P, where (p removes m tokens (1)+(2)+Alg. 4.3-1

(5) The value of Src(e,i) in co equals V(f), and that depends on

SM (n a(p)) as in Table 2.2-1 (2)-(4)+Def. 4.2-6

(6) m - In(I(d)), so e is initiated in p (4)+Defs. 4.3-2+4.3-1

(7) Let MARI be the node activation record derived from ft and P. and

let CCa and CC be the Creating-Copy functions corresponding to

MAR and MAR' respectively. Then p is the value in P of the output

entries of a Copy execution C or pidom 11 a CCP(p) is defined, the

first entry in p with value p is an output entry of CC (p), that

I

-527-

entry iS strictly preceded by Ent (CC (p),l) , and no other Copy

execution has output entries of value p, so C - CC (p) [(4)+

Lmma 5.2-3] - there is a node m such that NAR'(C) - (p,m)

[Def. 5.2-5] A since V(g) - p, EntP(Cl) precedes g - i.e., is in

a - so C is initiated in a [(4)+Def. 4.3-1] = NAR(C) - (pm)

[(3)+Leua 5.2-5] - CCa(p) - CC (p) - C [Def. 5.2-5]

Dynamic descendancy relations in a computation depend only on the input

and output entries of Copy executions in that computation. Furthermore,

(8) a and p are prefixes of co, so every Copy execution which has input

or output entries in a or P has the same input or output entries

in co [(3)+(4)+Alg. 4.3-1]. Hence

(9) pidom 1 - letting q' be the unique pointer in do H such that

p' - V(Ent a(CC a(p),l)) is dynamically descended from q' in a,

DD (q',p') and p' is the value of Ent (CC a(p),l). Also, p is the

value in 3, hence in w, of the output entries of CC a(p) [(7)+(8)], so

DD(q,p), and since q is unique in dom I, q' - q

Since DD (p,p),

(10) If pEdom TI, then q - p, otherwise q is the unique pointer in dom fl

such that V(Ent a(CC a(p),l)) is dynamically descended from q in a [(9)]

(11) a and P are prefixes of co, and a, P, and a are causal computations

for Int(P) (8)+(4)+Lemma 4.3-2

(12) For any Update or Delete execution U, D(U) extends to the end of

H a m U is initiated in a - Ent (U,2) is in a; i.e., U has the
pa

same selector input in o and a (1l)+Def. 5.2-6

a is a Fetch or Assign execution and is in no reach in a - e is in no

reach in p [(ll)+(7)+(6)+Lemma 5.2-6] - Ent (e,l) is not in the duration

-528-

of any Assign execution in p [(1l)+Def. 5.1-6] - no Assign execution

duration extends to the end of Ha [(3)+(4)+Lema 5.2-7] m the value in
p

Kaa (p)) is the value in SMOT(q)) [(3)+(10)] - the value of Src(e,i) is

as given in Table 5.3-1 [(5)].

e is a Select, Update, or Delete execution and i in no reach in c

= Ent P(e,l) is not in the duration of any Update or Delete execution which

has selector input a in co [(11)+(7)+(6)+Lmma 5.2-6] - there is no Update

or Delete execution with selector input s in a whose duration extends

to the end of Ha [(12)+(3)+(4)+Lema 5.2-7] - for any node a, the pair
p

(s,m) is in SM (nT (p)) iff (s,m)ESM(I1(q)) [(3)+(10)J -, the value of
a a

Src(e,i) is as given in Table 5.3-1 [(5)].

(13) e is a First execution or a Next execution with selector input s

the value of Src(e,i) depends Just on s and the set 0 of selectors

in the ordered pairs in SM (1 (p)) [(5)]

(14) e is in the reach of an Update/Delete execution U in o ms Ent (e,1)

is in D(U) in P [(ll)+(7)+(6)+Leama 5.2-6] - D(U) extends to the

end of H a [(3)+(4)+Lema 5.2-7] - letting s be the selector input
p

to U in a, hence in ca, if U is an Update, then sESc and sEO, and

if U is a Delete, then sESb and siO [(13)+(12)+(3)+(10)]

(15) For each sEZ, e is not in the reach of any Update/Delete execution

with selector input s in co - the duration of no such execution

extends to the end of Ha [(ll)+(7)+(6)+(3)+(4)+(12)+Lemae 5.2-6
p

+5.2-7] - sEO iff s is in a pair in SM01(q)) iff sESa [(3)+(10)J

Therefore, sEO iff sE(S-S b)USc [(14)+(15)), so the value of Src(e,i)

depends on a and (Sa-S)USC as in Table 5.3-1. AX

-529-

Lezaa 5.3-5 For any B program P, let S1 and S2 be any two equal initial

standard states for P. For i-1,2, let 21be any halted firing sequence

starting in S i and let -)(ii) Then, given Int(P), the pair

consisting of oand (0 satisfies the Initial Structure Constraint and

the First/Next Output Constraint.

I, Proof:
(1) Let p be the equal pointer relation defined from Int(P). Then,

since ca1 and (0 are both computations for Int(P), p is defined

for them [Lemma 4.3-2+Def. 5.1-10]

(2) There is a single one-to-one mapping I under which the conditions in

s1 and S2 of each arc in P match Def. 2.4-3

(3) For 1-1,2, let the heap in S i be (N i'fli SM i) Let p and Pi+2 be

any two pointers such that neither is the value of an output entry

of a Copy execution in w V Then there is no q ~p such that

DD 0,(qi~pi) and there is no q +*P+ such that DD 0)1(q i+2'pi+2)

Def. 5.1-9

(PlOPPP2-2) for 1-1,2, pi is the value in o)iof a source; i.e.,

Pis the value of an entry in wi [Defs. 5.1-10+4.2-6] -- piEdom fli

1(3)+Leimma 5.2-31. Similarly, (P3 '001) P(P2,co2) *P3 Edom n 1 and P2 (dom H2,

and (Pltc*IP(P4 a) 2) - plEdom n1 and P4 Edom 112 . Therefore, (pl,col)P(P2 9(02)

and (p 3 ,(1)P(P 2,(02) n2(P2) I(H1l(pl)) andnr2 (P2) -I(r1 1(p3)) [(l)-(3)+

Thin. 5.3-21] 10~3' n - p [(2)+(3)+Def. 2.2-1] P3 -p 1 [(3)+

Def. 2.2-1]. Also, (pc)p 2,) and (1 o)~ 4 t 2

n2P)- I~(r'1 l) andnf2 (P4) - I(r 1 (pl)) [(l)-(3)+Thm. 5.3-21

n [1(4 2 -p (2)+(3)+Def. 2.2-1)

-530-

(4) Let e and e2 be any two executions of structure operations

initiated in o1 and w2 respectively. For 1-1,2, let p, be

V(Ent i(e ,1)), let qi be the unique pointer in dom n i such that

DD (qP and let ni - n(qi) Lemma 5.2-4

(5) (pll)P(p2,02) -(ql,c)p(q 2 ,02) [(l)-(4)+Tm.. 5.3-2]

SM2(n2) - I(SM1 (n1)) [(l)-(4)+Thm. 5.3-2] = the value and the sets

of selectors in SM2(n2) and SM1(nI) are identical [Def. 2.4-1]

(6) For i1-,2, ei does not fall into a reach in ci
= if ei is a Fetch

or Assign execution, then for J-l,2, the value of Src(ei,j) in (0

depends only on the value in SM (n) if ei is a Select, Update, or
ii'

Delete execution, then the value of the source Src(ei,2) in co

depends only on V(Ent (ei,2)) and the set of selectors in SM (ni),

and if ei is an Update or Delete execution, the value of Src(eil) "

is identically zero [(l)-(4)+Lenma 5.3-4]

For i-1,2, ei does not fall into a reach in ai and (plcl)p(p2,'2)

if •1 and e2 are two Fetch or Assign executions, then for J-l,2, the

values of Src(e,,J) in co1 and of Src(e2,j) in c02 are the same, if el and

e2 are each a Select, Update, or Delete execution, with V(Ent ((el,2))

and V(Ent 2(e2,2)) the same, then the values of Src(el,2) in a), and of

Src(e2,2) in c2 are the same, and if el and e2 are each an Update or

Delete execution, the values of Src(el,l) in wl and Src(e 2,l) in (2 are

the same [(6)+(5)]. Therefore, the pair consisting of co and *2 satisfies

the Initial Structure Constraint [(l)+(4)+Const. 5.1-5].

(7) Assume eI and e2 are two First executions or two Next executions with

V(Ent)(e,2)) - V(Ent0) (e292)) - a. Then, for i1-,2, for J-l,2,

the value of Src(ei,J) in co depends only on a and on the set St

>1'. " i,

-531-
. a b cSwhr

of selectors, defined by S (S -s)US where

Sa {sEZI 3m: (sm)ESmi(ni)}
i

b {SEZJ 3Delete Di: e ER(Di) in WA S - V(Enti(D,92)))

and {s ZJ 3Update U : e ER(U) in o) A s - V(Ent (Ui,2))}

(1)+(3)+(4)+Leuma 5.3-4

(plowl)p(p2,w2) - S1 - S2 [(5)]. e1 is in the reach of an Update (Delete)

execution with selector input s in &1 iff e2 is in the reach of an Update
b b c c

(Delete) execution with selector input s in) = S1 S2 and SI = S2 [(6)].

Hence (pl, V)p(p2,Vc2) and el is in the reach of an Update (Delete)

execution with selector input s in w iff e2 is in the reach of an Update

(Delete) execution with selector input s - S1 = S2 [(6)] - for J-l,2,

the values of Src(e1,j) in a), and Src(e 2,j) in c02 are the same [(6)].

Therefore, the pair consisting of w I and c2 satisfies the First/Next

Output Constraint [(1)+(4)+Const. 5.1-6].

A
Lemma 5.3-11 Let S1 and S2 be any two equal initial standard states for

the same pS Program P and let Si and 22 be any two halted firing sequences

starting in S1 and S2 respectively. Let w, n(51921') and w2 "(S2*22)s

and assume that these are computations for Int(P). Let a1 and a2 be any

two causal computations for Int(P) and let p be the equal pointer relation

defined from Int(P). If given Int(P),

(1) for i1u,2, for any structure operation execution e, e is initiated in

aijae is initiated in ai, for every integer J, if there is an entry

Ent a (e,j) in ai, then there is an Ent (e,j) in co. with the same

value, and if there is an entry in a1 whose transfer has source

-532-

Src(e,j), then there is an entry in co with the same value whosei

transfer has source Src(e,J),

(2) for 1-1,2, for every structure operation execution e initiated in ai

and any Assign, Update, or Delete execution A, e(R(A) in at iff

eER(A) in wi, and

(3) for any pointers p1 and P2' (Pl'a)P(P2'a2) - (Pl' 0)P(P2P&2).

then ai satisfies the Atomic Output, Structure Output, and Unique Pointer

Generation Constraints, and the pair consisting of a1 and a2 satisfies the

Initial Structure and the First/Next Output Constraints.

Proof:

(4) For -1,2, o) satisfies the Atomic Output and Structure Output

Constraints given Int(P) Le=a 5.3-3

For each Fetch, Assign, Select, Update, or Delete execution e initiated

in ai and any Assign, Update, or Delete execution A, eER(A) in ai -

eER(A) in w, [(2)] A e is a Fetch, Assign, Select, Update, or Delete

execution initiated in coi and for J-l,2, if there is an entry Ent (AJ)

then there is an entry Ent (A,J) and V(Ent a(A,J)) - V(Ent (AJ)) [(1)]

A for k-l,2, the value of Src(e,k) in ai (if any) depends on the actions

of A and e and possibly on V(Ent (A,2)) and V(Ent (A,3)), as in the

Constraints [(4)+Def. 4.2-6+Consts. 5.1-3+5.1-4] - for k-1,2, the value

of Src(e,k) in ai (if any) depends on the actions of A and e and possibly

on V(Ent a(A,2)) and V(Ent a(A,3)) as in the Constraints [(l)+Def. 4.2-6].

Therefore, ai satisfies the Atomic Output and Structure Output Constraints

given Int(P).

(5) ca satisfies the Unique Pointer Generation Constraint given

-533-

Int(P) - (St, I,IE) Lemma 5.3-6

Let C be any Copy execution initiated in a1, and let p be the value of

its output entries in ai (if any). Then ai does not satisfy the Unique

Pointer Generation Constraint = there is an execution e0C whose output

entries have value p in ai and e either is in IE, is a Copy execution, or

is a Select execution not in a reach in ai [Const. 5.1-7] - C and e have

output entries of value p in wi [(1)] A by causality, e is initiated in

ai [Def. 4.2-7] - either e(IE, e is a Copy execution not equal to C, or

e is a Select execution not in a reach in coi [(2)] - co. does not satisfy

the Unique Pointer Generation Constraint [Const. 5.1-7]. Therefore, ai

does satisfy that Constraint given Int(P) [(5)].

(6) The pair wl , w2 satisfies the Initial Structure and First/Next

Output Constraints given Int(P) Lemma 5.3-5

(7) For i=1,2, let pi and p1+2 be two pointers such that neither is the

value in ai of an output entry of a Copy execution. Then for any

q, DDai(q' ip) - q - pi and DDa i(q,p 1+2) - q = p1+2 Def. 5.1-9

(8) (plQal)p(p 2 ,a2) A (p3, a,)p(p2,a2) = Pit P29 and p3 are each the

value of the output entries in a of an execution e which either

is in IE or is a Select execution not in a reach in ai

(7)+Defs. 5.1-10+4.2-6

(9) A (Plcal)P(P2 'C 2) A (P3'ol)P(P2 ', 2) (3)

plt P2 9 and p3 are each the value of the output entries in wi of an

execution e which either is in IE or is a Select execution not in a reach

(since e is initiated in a,, by causality [Def. 4.2-7]) [(1)+(2)] z none

of p1. p29 or p3 is the value of the output entries of a Copy execution

in ca2 or a)2 [(5)+Const. 5.1-7]

.I

-534-

(10) P1 ' P3 (9)+(6)+Const. 5.1-5

By symmetry,

(11) (Pia 1)p(p 2 . 2) A (plal)p(p4,a2) . P2 -P4

(12) Let a and a2 be any two Fetch or two Assign executions initiated In

(1 and a 2 respectively with pointer inputs p1 and p2 such that

(plod1 p 2wa2). Then aI and e2 are two Fetch or two Assign

executions initiated in w1 and w 2 respectively with pointer inputs

P1 and p such that (pMo01)p(p2,w2) f(1)+(3)). For 1-1.2, a

does not fall into a reach in a I a I does not fall into a reach in

W[(2)) -. for J-1.2. the values of Src(e 1 .j) in () and Src(e 2.J)

in j2 are the same f(6)+Const. 5.1-51 - the values of Src(e1,J)

in a I and Src(e 2.J) in a 2 are the same [(1)+Def. 4.2-61

(13) Let eI and 82 be any two Select, Update, or Delete executions

initiated in a 1 and a2 with equal selector inputs and pointer inputs

p1 and P2 such that (pl,1 I1)p(p2,*x2), Then e1 and a2 are two Select,

Update. or Delete executions initiated in (,) and w2 with equal

selector inputs 1(1)] and pointer inputs p1 and p2 such that

(Pl9' "Y P(P 2 2) 1(3))

(14) oI does not fall into a reach in a e does not fall into a reach

in o 11(13)+(2)] -. Src(e,.2) has the same value In w 1 as Src(e 2 P2)

has in w2 , and if both a and e2 are Update or Delete executions,

then the values of Src(e 1 ,l) In "1 and Src(. 2 .1) in A2 are the

same [(13)+(6)+Const. 5.1-5] -S rc(e1,2) has the same value in a1

as Src(e 2 2) has in a2, and if both aI and e2 are Update or Delete

executions, then the values of Src(e 1,) in a, and Src(.2,1) in 2

are the same [(l)+Def. 4.2-6)

-535-

The pair a1, a2 satisfies the Initial Structure Constraint [(7)+(8)+(10)+

(l1)+(12)+(13)+Const. 5.1-5].

(15) Let e1 and e2 be two First executions, or two Next executions with

the same selector inputs, initiated in a1 and a2 . Then e1 and e2

are two First executions, or two Next executions with equal

selector inputs, initiated in w1 and w2 (1)

(16) Their pointer inputs are p1 and p2 such that (p,,al)p(p2,a2) and

for each selector s, e1 is in the reach of an Update (Delete)

execution A1 with selector input s in a1 iff e2 is in the reach of

Update (Delete) execution A2 with selector input s in a2 - their

pointer input values are p1 and p2 [(1)] such that (plcl1)p(p2,02)

[(3)] and e1 is in the reach of an Update (Delete) execution A1

with selector input s in i Iff e2 is in the reach of an Update

(Delete) execution A2 in w2 [(15)+(2)+(1)] - for J-1,2, the value

of Src(el,j) in wi is the same as the value of Src(e 2,j) in 2

[(15)+(6)+Const. 5.1-6] - for J-1,2, the values of Src(el,j) in

aI and Src(e2,J) in a2 are the same [(1)+Def. 4.2-61

Therefore, the pair al, a2 satisfies the First/Next Output Constraint

[15)+(16)+Const. 5.1-6].

A

-536-

Appendix E

Proofs from Chapter 7

Theorem 7.1-1 Let S be any initial modified state from any LBS progrem

P, and let S' be the corresponding initial standard state. Let 2 be any

firing sequence starting in S on the modified interpreter. Then

A: 2 is also a firing sequence starting in S' on the standard

interpreter, and

B: S'20*9.

Proof:

Key definitions: Def. 2.1-5 - standard interpreter; Def. 3.3-7 - Standard

functions; Def. 3.3-8 - Strip; Def. 3.3-9 - modified interpreter;

Def. 7.1-1 - congruency (p)

Proof is by induction on the length of 2.

Basis: 121 - 0. This empty sequence is a firing sequence on any data-

flow interpreter starting in any initial state [Def. 2.3-1. Furthermore,

SI2 - S' and S*" - S [Def. 2.3-1], so since Q is empty in an initial

state, S''-2.2 [Defs. 3.3-5+7.1-1]. Hence A and B.

Induction step: Assume A and B are true for an firing sequence of length

n, n 1- 0, and consider Qp, starting in S, of length u+l.

(1) Let d be the actor in P of which the last firing p is a firing. Then

d is enabled in S*2 Def. 2.3-1

(2) The input and output arcs of d in S-. are configured as required

for enabling per Def. 2.1-4, and if d is a Select, 1p: dEQ(p) in

'"2 Def. 3.3-6

-537-

(3) S'2S- ind. hyp. B

(4) If d is a gate, then its control input in S'12 (being non-pointer)

is the same as in S'2 (3)

For any input arc b of d, b is empty in SIa m b is empty in S'2 [(3)]

= d is a merge gate with a true (false) control input in S,2, and b is

the F (T) input arc of d [(2)+Def. 2.1-4] = d is a merge gate with a

true (false) control input inS1 .S9, and b is the F (T) input arc of d [(4)].

For any output arc b of d, b is empty in S-2 [(2)+Def. 2.1-4] - if b is

not empty in S''2, then d is a Select and 3p: d(Q(p) in S-2 [(3)]

b is empty in S' .2 [(2)]. Therefore, d is enabled in S''2 on the

standard interpreter [Def. 2.1-4], so

A: 9p is a firing sequence starting in S' on the standard interpreter

[(+l)Def. 2.3-1]

(5) Let S2 be (r1,U1,Q1) and let Fire(S-2,d) be (r2,U2,Q2), while

s'.2 is (1,U') and S'" is (r2,U 2) . Let rs be

Standardr ((Strp (rl,d),U 1),d)

(6) r' - Standardr,((l ix),d) and U - Standardu((r,U).d) (5)

(7) U2 - Standar%((Strip(rl,d),U1),d) (5)

(8) For every arc b in P, the conditions of b in (rU 1) and in

(rl,Ul,Q1) match to within withheld outputs, and U! is identical

to U1 (3)+Def. 7.1-1

(9) Let b be any arc in P which is neither an input nor output arc of

d. Then b's condition in r2 is identical to b's condition in ra

which is identical to b's condition in Strip(rl,d) [(5)] which is

identical to b's condition in rl, and b's condition in 2' is

identical to b's condition in r [(6)].

-538-

(10) If b is a data output arc of a Select operator S, then Sod [(9)+

Def. 2.1-11 A Vp: SEQ2(p) [SEQ1 (p) v S - d], so for all p.

SEQ2 (P) 1ff S(Q 1(p)

(11) For any arc b in P which is neither an input nor an output arc of d,

the conditions of b in Fire(S'Q,d) and in S'.gqp match to within

withheld outputs [(8)+(9)+(l0)+(5)+Def. 7.1-11

(12) Let b be any are which is an input arc of d and is not an output arc

of d. Then b is not the T (F) input arc of a merge gate d with a

false (true) control input in Strip(rid) -*b is not the T (F

input arc of a merge gate d with a false (true) control input in r

Sb is not the T (F) input arc of a merge gate d with a false

(true) control input in q~ [(4)+(5)1 - b is mty in ((5)M1 and

b is empty in r' I(5W)4() - b is snpty in rand io r'2 2

(13) b is the T (F) input arc of a merge gate whi~ch has a false (true)

control input in r b's condition in r' mtches Its condition In

rl, [(4)+(6)] A since d Is a pI actor, b's condition In Strip(rl1 d)

matches that in r1and d Is a merge gate which has a false (true)

control input in Strip(rl5 d) [Def. 2.2-41 -- b's eondition in r

matches b's condition in r. [()] - since r2differs from r a only

In the conditions of d's output arcs, b's condition in r2 matches

b's condition in 1 [(12)]

(14) b Is a data output arc of a Select operator S -*S~d [(12)] A for

all P, SEQ 2(P) iff ESEQ1(P) v S - dj, so for all p, S(Ql(p) if f

S(Q2 (p)

(15) b Is a data output arc of a Select operator S -* 3p: SEQ 2(p)

S(Q (p) [(14)1 b is empty in rand has a token of value p inr

-539-

[(8)] zb is the T (F) input arc of a merge gate d with a false

(true) control input in r1 [(11)+(2)+Def. 2.1-4] = b is empty in

r2 and has a token of value p in r 2' [(13)]

(16) b is not a data output arc of a Select operator S such that 3p:

SEQ2(p) = b is not a data output arc of a Select operator S such

that 3p: SEQ1 (p) (14)] - either b is empty in r1 and r, or b

has tokens of non-pointer value v in r1 and q , or b has a token

of pointer value p in q and a token of value (p,R) or (p,W) in r1

[(8)] z either [b is the T (F) input arc of a merge gate d with a

false (true) contol input in r and either b is empty in r2 a4d

r , b has a token of non-pointer value v in r and r', or b has a

token of value p in r' and one of value (pR) or (pW) in r2] [(13)]

or [b is not the T (F) input arc of a merge gate d with a false

(true) control input in r and b is empty in r2 and r] ((11)]

(17) For any input arc b of d which is not an output arc of d, the

conditions of b in Fire(S'2,d) and S' I2p match to within withheld

outputs (15)+(16)+(8)

For any output arc b of d, there are two cases to consider: d either is

or is not a structure operator.

Case I: d is not a structure operator

(18) Since d is not a Select, b is empty in r2 iff b is empty in r1 [(5)]

iff d is a T- (F-) gate which has a false (true) control input in

Strip(rl,d) [(5)] iff d is a T- (F-) gate which has a false (ttue)

control input in r iff d is a T- (F-) gate which has a false (true)
1e

control input in r [(4)] iff b is empty in r; [(6)]

If b has a token in r 2 and ri,. there are two sub-cases to consider.

-540-

Case Ia: d is a pI operator.

Let v be the value of the token on b in rj. Then there is an input

arc a of d which holds a token of value v in rj that is removed by V

[Def. 2.2-41. If d is a gate, it has the same control input in r1 as in

re, and since d is enabled, there is a token on a in r [(4)+(2)+Def. 2.1

Def. 2.1-4]. The value of that token is v, if v is not a pointer, or

(v,R) or (v,W), if v is a pointer [(8)]. There is a token of some value

vt on a in Strip(r,,d), and if d is a gate, it has the same control

input in Strip(rl,d) as in ri. Thus there is a token of value v' on b

in r [(5)], so there is a token of value v, if v is not a pointer, or

(v,R) or (v,W), if v is a pointer, on b in rF2.

Case Ib: d is not a pI actor (or a structure operator)

The value of the token on b in l2 equals the value of the token on

b in rs, which depends only on the values on d's input arcs in

Strip(rd) and the type of actor d is, and the value of the token on b

in r2 depends, in exactly the same way, on the values on d's input arcs

in r, and the type of actor d is [(5)+(6)]. The values on d's input arcs

in both r and I1 are all non-pointers, as are the values on b in r and

r; [Def. 2.2-5]. The values on d's input arcs in Strip(rl,d) are identical

to those in r1 , which are identical to those in ' [(8)+(2)]. Therefore,

the values on b in r2 and r2' are identical non-pointers.

In either case,

(lV) If d is not a structure operator, then the conditions of any output

arc b of d in Fire(S*",d) and S' .- match to within withheld outputs

[(18)+(5)1 and U2 -U 1 -Ul - U[[(7)+(8)+(6)]

-541-

Case II: d is a structure operator

(20) U2 and the token on b in r depend only on U1, the values on d's

input arcs in Strip(F',d), and the pointer-node pair (p,n) in T,

if d is a Copy. Ui and the token on b in r2 depend in exactly the

same way on Ui, the values on d's input arcs in ri, and on (pn),

if d is a Copy (6)+(7)+Def. 2.3-1

There are tokens on all of d's input arcs in Il [(2)+Def. 2.1-4], so

the values on d's input arcs in r and rj differ by at most an "R" or

"W" tag [(8)]. Thus, the values on d's input arcs in Strip(rj,d) and

r are identical. Therefore, U2 is identical to U' and b has identical

tokens in r and 2.2 b is not any output arc of a Copy or a data output

arc of a Select z the tokens on b in r and r 2 have identical non-pointer

values - the tokens on b in r2 and r' have identical non-pointer values.

b is any Copy output arc z the tokens on b in r and r; both have as value

a pointer p [Def. 2.3-1] a the token on b in r2 has value (p,R) or (p,W)

and the token on b in q has value p. b is a data-output arc of a Select

d - the tokens on b in rs and r' both have a pointer value q [(5)+(6)]

b is empty in r2 and dEQ2 (p). Therefore,

(21) If d is a structure operator, then U2 is identical to U2, and the

conditions of b in Fire(S-2,d) and S' "p match to within withheld

outputs (8)

In either Case I or Case II, then,

(22) is identical to U' and the conditions of b in Fire(S*2,d) and

S"go match to within withheld outputs (19)+(21)

(23) For any arc b in P, the conditions of b in Fire(S'Q,d) and S'4

match to within withheld outputs, and U2 is identical to Ui [(ll)+

-542-

(17)+(22)]

(24) Let S.20 - Release(G'2,U2,Q2)) be (r 3 ,U3 ,Q 3) ((5)]. Then U3 is

identical to U2 which is identical to U2 (23)

(25) For any arc b in P, b is the data output arc of a Select S and 3p:

SEQ3 (p) - b is an output arc of a Select S and 3 p: SEQ2(p) - b is

empty in r2 and there is a token of value p on b in r' [(23)+(5)]

m b is empty in r3 and there is a token of value p on b in r'.

(26) b is not the data output arc of a Select S such that 3p SE3(p)

either b Is not the data output arc of a Select S such that 3p:

SEQ(p), implying that the condition of b in r3tis identical to

that in r2' or b is the data output arc of a Select S such that

3p: SEQ2 (p), which implies that b has a token of value (p,R) in

r3 - either [b is empty in r3 and r. or b has a token of non-

pointer value in r3 and r2 or b has a token of pointer value p in

r2 and a token of value (p,R) or (pW) in r31 ((23)] or [3 p: b has

a token of value p in r' and a token of value (p,R) in r3] (23)].

Therefore, for every arc b, the conditions of b in S'2p and V' -9p match

to within withheld outputs 1(25)+(26)), so from this and [(24)],

Theorem 7.1-3 Let P be any LBS program. For any initial modified state

S for P, let S' be the corresponding initial standard state and let 2 be

any halted firing sequence starting in S. Then there is a halted firing

sequence 9' which has 2 as a prefix such that n(S',2') is SON-inclusive

of n(S2).

-543-

Proof: 2 is a firing sequence starting in S' and S'-2tLS2 [Thu. 7.1-1],

so

(1) 2 Is a prefix of a halted firing sequence 2' starting in S'

Def. 2.3-1

(2) Let 0) - rj(S,2) and co' - ?(S',2'). Let (Int,J) be the expansion for

P from EE(LBS' M) and let (Int',J') be the expansion for P from

EE(LBSS). Then Int' - It - Int(P) Def. 4.3-2

(3) Let Int - (St,/lIE). Then o and cw' are both causal computations

for Int (2)+Lezuma 4.3-2

(4) coEJS 2g, co'EJ3, 2", 4,(w) is the reduction of 2, and 4P(ia') is the

reduction of 2' (2)+Lema 4.3-3

(5) Let e - Ex(d,k) be any execution in which /(d) is a structure

operation. Then dESt-DL Def. 4.3-2

(6) e is initiated in co - there are at least k firings of d in 2

[(2)-(5)+Tha. 4.3-2] there are at least k firings of d in 2' [(1)]

-e is initiated in c'[(l)-(5)+Thm. 4.3-2]

(7) Let NDE be the set of executions NDE - {Ex(d,k) I dESt-DL). Then

for any eENDE which is initiated in 00b, the initiating entry to e

is preceded in both co and col by the initiating entries to exactly

k-1 other executions of d (3)+(l)+(4)+(6)+Cor. 4.3-1

Since the reduction of a prefix of 2' is a prefix of the reduction of 2'

[Def. 2.4-51, P(co)) is a prefix of 44w') [(4)+(l)], so

th(8) For any n 5J(w ,the n execution from NDE to initiate in (0 is

Ex(dk) iff the n thfiring in 4 (w) is the k thfiring of d [(7)+
th thDef. 4.3-41 iff the n firing in 41(o)') is the k firing of d iff

the n thexecution from NDE to initiate in co' is Ex(d,k) [(7)4.

-544-

Def. 4.3-4]

(9) Let e and e' be any two distinct executions of structure operations

such that e is initiated in co. Then both e and e' are in NDE

(7)+Def. 4.3-2

th
There is an n _5 14)(4) such that e is the n execution from NDE to

initiate in both c and c' [(9)+(8)], so

(10) e' initiates before e in co iff e is the nth execution from NDE to
th

initiate in o), for n 5 I4(o))J, e' is the m , and u< n iff e in
th

the n execution from NDE to initiate in c', n 5 J4(co) 1, e' is

th
the m , and m < n [(8)] iff e' initiates before e in co,

(11) Let C - Ex(dk) be any Copy execution initiated in m. Then there

is one input entry to e in m [Defs. 4.2-6+4.3-1+2.2-5], and there

are at least k firings of d in 9 [(9)+(7)+Leiua 4.3-1], so C has

output entries in o - ?1(S,2) [(2)+Levma 7.1-2]

(12) Let fp be any prefix of 2. Then e and fp are both firing sequences

starting in S Def. 2.3-1

By Thi. 7.1-1, then, e and &p are both firing sequences starting in S',

and S'.OPS-0, so

(13) for each arc b in P which holds a token in S*, b holds a token in

S'.e, and the value of the token on b in S t*O is v iff the value of

the token on b in S0O is v, if v is not a pointer, or (v,R) or

(v,W), if v is a pointer (Def. 7.1-1], and

(14) if (p is a firing of a gate actor d, then d is enabled in both S'

and S'e* [(12)+Def. 2.3-1), so it has aantrol tokens in both

states [Def. 2.1-4] whose values must be the same

I.

-545-.

(15) For any prefix A of 2, A~ is a firing sequence starting in S and

in S', and S'*AgS- [Def. 2.3-1+Thn. 7.1-1]. Thus, for any arc b

of P, b holds a token in S*A -sb holds a token in S'*A [Def. 7.1-1]

so Source(b,s',A) - Source(bS,A) [Lemma 7.1-3]

(16) Let e - Ex(dk) be any execution such that I(d)*OA and there are

input entries to e in w. Then In(I(d)) > 0 (3)+Def. 4.2-6

I(d)*IG, so eEIE and dESt-DL [(3)+Defs. 4.3-1+4.3-2]. Hence,

(17) there is a prefix ft~ of 2 in which p is the k th firing of d

(2)+Lemua 4.3-1

(18) ftp is a prefix of 2' in which (p is the k thfiring of d (17)+(l)

If d is a gate, it has the same control input in both S*G and S'-9 [(17)+

(12)+(14)], so for each input arc b of d, there is a token on b in S*e

but not in S* ft iff there is a token on b in S'6 'but not in SlOcp

[Def. 2.1-5]. Therefore,

(19) For any integer J, source s, and value v, there is an entry f in W~

such that V(f) - v and T(f) has source s and destination Dst(e,j)

iff, in going from S'8 to S*O&p, a token of value v, if v is not a

pointer, or (v,R) or (v,W), if v is a pointer, is removed from b,

the number-i input arc of d, and s - Source(b,S,O) [(17)+Alg. 4.3-1]

if f in going from S'*9 to S'i&q, a token of value v is removed from

b [(13)] and a - Source(b,,S',G) [(15)] iff there is an entry g in

Of' such that V(g) - v and T(g) has source s and destination

Dst(e,j) [(lS)+(16)+Alg. 4.3-1]

(20) Let a - Ex(dk) be any non-pI execution. Then I(d)#OA [Def. 5.1-2],

so for any J, If there is an entry Ent 6)(e,j) in co, then there is an

entry But ,(*,J) in a,' with the ame value [(16)+(19)J
CO)

-546-

(21) Let f be any entry in to. Let V(f) be v and let T(f) be

(sDst(Ex(dk),j)) where a - Src(e,i). Then Ex(d,k)EIE - 1(d) IG

-In(l(d)) - 0 [Defa. 4.3-244.3-1]. Since Ex(d,k) has an input

entry in o, In(I(d)) > 0 [(3)+Def. 4.2-6]-*Ex(d,k)dIE. Therefore,

(22) if I(d)#OA, then there is an entry g in a)' such that V(g) - v and

T(g) has source s [(16)+(19)]

(23) 1(d) - OA - there is a token on an arc b in S-9 whose value is v, if

v is not a pointer, or (v,R) or (v,W) if v is a pointer, and

s - Source(b,S,2) [(21)+Alg. 4.3-1] -- there is a token of value v

on b in S''2 [(13)] -* that token either is or is not removed by a

firing in 21 which is not in 2 [(1)]

(24) Given any arc b, let 0 be any prefix of 2' longer than 2 such that

every firing in e which removes a token from b is in 2. Then for

any prefix a of 2' such that 121 _ JAI < 101,-there is a token on

b in S'-& (23)

b is in the number-i group of output arcs of actor d' - for no a such

that 121 :- JAI S 11 is d' enabled in S1' A [(24)+Def. 2.1-4] - there are

the some number of firings of di' in 6 as in 9 [Def. 2.3-13. Hence,

(25) Source(b,S',8) - Source(bS,2) - a (24)+Def. 2.3-1+Lema 7.1-3

(26) There is a token of value v on b in S' .2 which is removed by a

subsequent firing in 2' - there Is a prefix Oq; of 2' longer than 2

such that every firing in 0 which removes a token from b is in 2

and V removes a token from b - there is an entry a in co' such that

V(S) - v and T(g) has source Source(b,S',O) - s(24)+(25)+Alg. 4.3-1

(27) There is a token of value v on b in S'-2 which is not removed by a

subsequent firing - there is a token of value v on b in S"2', 2'

-547-

is halted, and 2' is a prefix of 2' longer than 2 in which every

firing which removes a token from b is in 2 [(1)] - there is an

entry g in c' such that V(g) = v and T(g) has source Source(b,S',2'),

which is s (24)+(25)+Alg. 4.3-1

Therefore, for every entry f in w, there is an entry g in w' whose value

is the same and whose transfer has the same source [(21)+(22)+(23)+(26)+

(27)], so co' is SOE-inclusive of o [(5)+(6)+(9)+(1O)+(l1)+(20)+Def. 5.2-8].

A

Theorem 7.1-4 EE(LD,M) is a Structure-as-Storage model.

Proof:

(1) EE(LD,M) = (V, L, A, In, E) is an entry-execution model [Thin. 4.3-1].

There is a distinct subset V of V containing pointers [Defs. 2.2-1+
p

4.3-1]. The action domain A contains the eight actions, and In

assigns the input arities: Fetch (1), First (1), Next (2), Select

(2), Copy (1), Assign (2), Update (3), and Delete (2) [Defs. 3.3-12+

2.2-3+4.3-1].

(2) Let (Int,J) be any expansion in E, where Int - (St,/,IE). Then there

is an LD program P such that this pair is an expansion of P

Def. 4.3-1

(3) Let J be any job in J. Then J is a job for Int [(l)+(2)+Def. 4.2-3].

Int - Int(P), and there is an equivalence class E of initial

modified states for P such that J - JE [(2)+Def. 4.3-2].

(4) P is an LBS program (2)+Def. 3.3-12

(5) Let S and S be any two initial states in E, and let 21 and 2 be

1 2 1 2

1:77

any two halted firing sequences starting InIn ,; 2 For 1-1,2,

lot '1be the Initial standard state for P corresponding to .,

Then there in a halted firing sequence sa' starting in ,q such that
II

n(1is)t SON-inclusive of 1iS(4) Q)+Thm. 7.1-31. Let

w n(Q and co (Sl~ j
(6) toand toare both causal computations for Int(P) (5)+Lama 4.3-2

(7) w' satisfies the Input/Output Type Constraint t(S)+Lowma 5.3-l1. the

Structure Ouatput Constraint I(S)+teimma 5.3-31, and the Unique

Pointer Generation Constraint [(5)+Lesuua 5.3-61, all given Int(P)

For any pointer p which ts the value in w' of the output entries of a

Copy execution C. the first entry in toi With value p is one of those

output entries of C I(6)+(7)+Leima 5.3-81, so

(8) For any structure operation execution a Initiated in w I and for any

Assign. Update, or Delete execution A. efR(A) in QfR(A) in w'

(6)+(5)+Lemma 5.2-6

() satisfies the Input/Output Type. Structure Output, and Unique

Pointer Generation Constraints, given Int(P)(5)+(6)+(7)+Lein .5.3-9

(10) For any pointer p which is the value in wIof the output entries of

a Copy execution C, the first entry In toIwith value p is one of

those output entries of C (6)+(Q+Lomma 5.3.4

(11) Let p1 be any computation in .,; Then is t causal (Dot. 4.3-51.

and V, to in JZ, so it is a computation for Int - Int(P) 1(3)+

Defe. 4.3-4+4.2-31

(12) wist SON-inclusive of 14(5)4k4)+Lewaa 5.3-7

(13) For any structure operation execution e initiated in p1 and any

Assign. Update, or Delete execution A, @ER(A) in s(e(A) inco

I

-549-

[(6)+(1l)+(12)+(10)+Lemma 5.2-6] A e is initiated in co [(12)+

Def. 5.2-8] - e(R(A) in (4 [(8)]

(14) P, satisfies the Input/Output Type, Structure Output, and Unique

Pointer Generation Constraints, given Int(P)

(6)+(11)+(12)+(l0)+Lemma 5.3-9

(15) For any pointer p, p is the value of the output entries in P1 of a

Copy execution C - the first entry in P, with value p is one of

those output entries of C (ll)+(14)+Lemaa 5.3-8

(16) Let ai be any prefix of p,. Let yf be any prefix of a1 and let e

be the execution of which f is an output entry. Then yf is a

prefix of P,, so e is initiated in y [(11)+Def. 4.2-7]. I.e.,

(17) ai is causal

(18) a is in J, and so a,, P,, and o) are all computations for Int(P)

(16)+(l1)+(6)+Defs. 4.3-3+4.2-3

(19) For any structure operation execution e - Ex(d,k) initiated in ai

and any Assign, Update, or Delete execution A, eER(A) in i iff

eER(A) in ai only if A is initiated in a1 [(17)+(11)+(18)+(16)+

(15)+Lemma 5.2-6] A there are In(/(d)) input entries to e in a1 ,

hence in p1. so e is initiated in Pi [Def. 4.2-6]

(20) eER(A) in o4 iff eER(A) in a1 only if A is initiated in a1 (19)+(13)

Let f be any entry in a,. Then f is in Pi [(16)]. Let T(f) be

(Src(Ex(d,k),J), Dst(Ex(d',k'),J)). Then Constraint 5.1-1 dictates, one

or two times, what the type of V(f) should be, once based on 1(d) and 1,

and again based on 1(d') and J. Both of the types so dictated match the

type of V(f) (since f is in Pi [(14)]). Therefore,

(21) a1 satisfies the Input/Output Type Constraint

WPM_ __

-550-

(22) J satisfies the Pointer Transparency Constraint Lemma 7.1-1

(23) Let e be any structure operation execution. If e is initiated in ai ,

the e Is initiated in (I [(19)), hence inco [(12)+Def. 5.2-81.

For every integer J, there is an entry Ent a(e,j) in ai s there is

an entry EntP (ej) in P, with the same value [(16)] - there is an

entry Ent (ej) in o) with the same value [(12)+Def. 5.2-8] - there

is an entry Ent ,(ej) in c, with the same value [(5)+Def. 5.2-8].

There is an entry in ai whose transfer has source Src(ej) only if

there is an entry in w with the same value whose transfer has

source Src(eJ) [(16)+(12)+Def. 5.2-8] only if there is an entry in

coi with the same value whose transfer has source Src(e,j) [(5)+

Def. 5.2-8]

(24) For any two pointers p1 and P2 0 (plal)p(p2 "a 2) - (Pl'Pl)P(P2' 2)

[(17)+(l1)+(18)+(16)+(19)+Lema 5.3.10] - (p1,))p(p2, 2) [(1)+

(6)+(18)+(12)+(20)+Lemma 5.3-101 - (p1ll .)p(p 2 , ') [(6)+(5)+(8)+

Lam 5.3-101

SinceS' and S' are equal initial standard states for LS program P
1 2

[(4)+(5)+Thm. 7.1-21, a1 satisfies the Atomic Output, Structure Output,

and Unique Pointer Generation Constraints, and a1 and a 2 as a pair

satisfies the Initial Structure and First/Next Output Constraints

[(5)+(6)+(7)+(23)+(24)+Lema 5.3-11]. Therefore, every computation in JE

satisfies the Input/Output Type, Atomic Output, Structure Output, and

Unique Pointer Generation Constraints, every pair of computations satisfies

the Pointer Transparency Constraint [(16)+(l1)+(5)+(21)+(22)+Def. 4.3-3].

-551-

From this and (l)-(3), EE(LDhM) is a Structure-as-Storage model 1 .ief. 5.1-

[Def. 5.1-1].

Q.E.D.

Lesma 7.2-3 For any equivalence class E of initial modified states f or

an LBS program P, let J~be J * Let Int(P) be (St, 1,11). Assume there are

two computations agf and afg in J such that T(?) - T(f), T(g) - T(g), and

f and g initiate distinct executions el a Ex(dlk I) and e 2 = Ex(d 2 9k 2) in

agf, where d and d are in St-DL. Let S and 2 (S' and 2') be the state1 2

in E and halted firing sequence starting in that state such that agf (ang)

is a prefix of a computation in J " (J S,1).Then there are prefixes

42(pl of 2 and 0'p' of 2', whose reductions are tagf) and c(ai), such

that V' equals 0 and for 1-1,2, T, (qp!) is the k, th firngod

Furthermore, pl and (P2 potentially interfere in (p2,if f Ent(el,l) and

Ent(e 2Pl) are in the same access history, and e I is in R(e 2), in agf.

Proof: There is an expansion (Int,J) in EE(L BS'M) such that Int - Int(P)

and JEJ [Defs. 4.3-2+4.3-1]. Hence, J - Jis a job for Int(P)

[Thin. 4.3-l+Def. 4.2-2], so

(1) agf and ali are computations for Int(P) Def. 4.2-3

(2) Let ~ p)be the computation in J (Jof which agf (a-)is

a prefix. Then, for 1-1,2, the initiating entry to a~ in Pi (Pip

is preceded therein by the initiating entries to exactly k-1 other

executions of d i Con. 4.3-1

(3) 4'(agf) equals 4I(a)Pf 1, in which 0.is the k th firngod

(2)+Def. 4.3-4

The prefix A of 9 whose length is the length of 4'(agf) has as its

-552-

reduction 0(agf) [Lemma 7.2-2], so A can be written as 01' where e is
th

a prefix of 2 and 1 is the ki firing of d In 2 [(3)+Def. 2.4-51. Then

0 is the prefix of 2 whose length is two less than the length of A, so the

length of 6 is two less than the length of O(agf). I.e., e is the prefix

of 2 whose length Is the length of 0(a) [(3)], so the reduction of 6 is

-t(a) [Lemma 7.2-2].

For 1-1,2, there are In(l(d))-I input entries to ei in a [(l)+

Def. 4.2-6], and ? and g are input entries to e1 and e2 respectively

[Defs. 4.2-6+4.2-5], so f and g are the initiating entries to e and e

respectively, in afg [(l)+Def. 4.2-6]. The reasoning of the above para-

graph applies, to give that there is a prefix 0'pjq of 2' whose reduction

th
is (afg) such that 0(a) is the reduction of 6' and (pj is the k firing

of d in 2'. Since 0' and e have the same reduction l(a), they are equal

[Def. 2.4-5].

(4) p is a permutation of co - -n(,0,2) [(2)+Da. 4.3-51, which Is a

computation for Int(P) [Lemma 4.3-2]

(5) For any J and for i1-,2, the value of Ent(etj) in co equals the value

of the token removed from dI's number-J input arc at dI'a
kith

firing in 2 Aig. 4.3-1

(6) For i1-,2, all In(I(di)) input entries to et in co are in agf

(1)+(2)+()4Def. 4.2-6

(7) Ent(el,l) and Ent(e2,1) are in the same access history in agf iff

they have the same pointer value [Def. 5.1-4] iff Ent(el,1) and

Int(e2,l) have the same pointer value in co [(6)] iff (1 and 92

remove tokens vith the same pointer value from the number-i input

arcs of dI and d2 in 2 [(5)]

ol- ,

-553-

(8) There are entries Ent(el,2) and Ent(e 2 2) in agf and their values are

equal iff there are entries Ent(e1,2) and Ent(e2 ,2) in co and their

values are equal [(6)] iff 9, and remove tokens of equal value

from the number-2 input arcs of d1 and d2 in2 [(5)]

(9) No execution initiates between e1 and e2 in cgf Def. 4.2-6

(P and V2 potentially interfere in 2 iff they have equal number-1 inputs

and either P2 is an Assign firing and (p is a Fetch, Assign, or Copy

firing, or (2 is an Update or Delete firing and (p is a Copy, First, or

Next firing or a Select, Update, or Delete firing with the same number-2

input as (2 (Def. 3.1-2] iff Ent(el,l) follows Ent(e2,1) in the same

access history in agf, with no intervening entries [(7)+(9)+Def. 5.1-41

and either e2 is an Assign execution and e1 is a Fetch, Assign, or Copy

execution, or e is an Update or Delete execution and eI is a Copy, First,

or Next execution, or a Select, Update, or Delete execution with

V(Ent(e],2)) - V(Ent(e2,2)) [(8)+Alg. 4.3-1] iff Ent(el,l) and Ent(e2,l)

are in the same access history in cgf and eI is in R(e2) in Ggf [(9)+

Defs. 5.1-5-5.1-8]. A

Lea 7.2-5 Let SI nd S2 be any two equal initial modified states for

the same program P. Let 21 and 22 be two firing sequences starting in S1

and S2 respectively such that

(1) for each actor d in P, there are the same mober of firings of d

in both 21 and 22, 2

(2) for each gate d in P and each k, the k firings of d in 21 and 2 2

remove control tokens of the same value, and

-554-

(3) for any two actors d and d', and for any k, there is a k' such that

th
if the k firings of d in 2, and 22 remove tokens from output arcs

of d', then those firings both are preceded by k' firings of d'.

Then for any arc in P which holds tokens of pointer value in S1 21 and

S212., either both are read pointers or both are write pointers.

Proof:

(4) Every token which appears on a program input arc has a read pointer

as value Def. 3.3-5

(5) Every token which appears on a number-1 output arc of a Copy has a

write-pointer value, and every token which appears on the nmmber-2

output arc of a Copy or the number-i output arc of a Select has a

read-pointer value Def. 3.3-9

(6) Every arc can hold a token of pointer value only if it is a program.

input arc or an output arc of a Copy, Select, or p1 actor

Def8. 3.3-9+2.2-5

Prove by contradiction that for every pI actor d in P and every integer

k > 0, tl~e kth firing of d in 21 outputs a read (write) pointer iff the

kth firing of d in 2 outputs a read (write) pointer. Assume

(7) the above is false

(8) There is a prefix 4 of 21 such that for every p1 actor d' and

integer k' such that there are no more than k' firings of d' in e,

the k'th firing of d' in 2I outputs a read (write) pointer iff the

k' th firing of d' in 2 2 outputs a read (write) pointer, and op is the

kth firing of pt actor d, it outputs a read (write) pointer in 2 1,

and the k t h firing of d in 2 2 does not (7)

~-555-

By (2), d is a gate. - removes a true control token iff the kth firing

of d in 2 removes a true control token. Hence,

(9) there is one input arc b of d such that a token is copied from b to

boh ian
d'a output arcs by the kt firing of d in both 91 and S2

[Defs. 2.1-5+2.2-4]. b is a program input arc or an output arc of

th
a Copy or Select - the k firings of d in 21 and g2 either both

output read pointers or both output write pointers [(4)+(5)], so

b is an output arc of a pI actor d' [(8)+(6)]

(10) The tokens output by T in 21 are identical to those output by the

k th firing of d', where there are exactly k' firings of d' in 0

[(9)+Def. 2.1-5], so there are exactly k' firings of d' before the

k firing of d in 22 [(9)+(3)]. Hence the tokens output by the

thk firing of d in 2 are identical to those output by the k'th

firing of d' in 2 [(9)+Def. 2.1-5].

The tokens output by (p are read (write) pointers iff the tokens output by

the kth firing of d in 2 are read (write) pointers [(10)+(8)]. Since

(7) leads to this dontradiction with (8), (7) is false; i.e.,

(11) for every pI actor d and integer k > 0, the kth firing of d in 21

outputs a read (write) pointer iff the kth firing of d in 2

outputs a read (write) pointer

Letting b be any arc which holds a token of value (p,R) or (p,W) in both

.92 '22 and Sf2 1 , b is an output arc of a pI actor d - the token on b in

S12 1 was output by the kth firing of d in 21. where k is the exact number

of firings of d in a1 [Def. 2.1-5] - there are exactly k firings of d in

22 [(1)] - the token on b in S2.2 was placed there by the kth firing of

d in 22 [Def. 2.1-5]. Therefore, the token on b in Sf121 is a read

-556-

(write) pointer 1ff the token on b in i2 is a read (write) pointer

[(6)+(4)+(5)+(1l) J.

A
Lemma 7.2-6 Given an LD progrm P, let 9 be any halted firing sequence

starting in any Initial modified state S for P. Lot 02 l be any prefix

of 2 and let 2 be such that 2 - OW2012. If %1 2 is a firing sequence

starting in S and is identical to S*80 2p 1 , then 2' - 60 is a

halted firing sequence starting in S and n}(S,1') contains the same set of

entries as TI(8.2).

Proof:

Key definitions: Def. 2.3-1 - firing sequence starting in a state;

Defe. 3.3-9+3.3-7+2.1-5 - modified interpreter; Ag. 4.3-1 - o(S,2)

First prove the following hypotheses by induction on the lengths of the

prefixes A of S:

A: 01(2A is a firing sequence starting In S

B: S, I O2 A is Identical to S*0- 2 (PA

C: w(S, &p1 09A) contains the same set of entries as 0)(S, 02PA)

Basis: "aI - 0.

A and B are true by Lem hypothesis.

(1) Let d1 and d2 be the actors in P of which (and 2 are firings.

Then both ore enabled in S*B

If either is a gate, its control input arc has * token on it in S-0, and

so that arc Is not an output arc of the other actor [(1)+Defs. 3.3-6+

2.1-41. If d1 (d2) Is a Sate, then the control token input by 1 (#2)

-557-

in either Ocp1o2 or 2listhe token on its control input .rc in S e.

Therefore,

(2) The set of input arcs from which (cp) removes tokens is the same

in both ftp(p 2 and *P201 .All of those arcs have tokens on them in

se [(l)+Defs. 3.3-6+2.1-4], so none of those arcs is an output arc

of either d 1or d 2[(l)+Defs. 3.3-6+2.1-41.

(3) All of the tokens removed by Q, ((2 in either 01P2 or ft'2p are on

the arcs from which they are removed in S-0 (2)

(4) Let b be any input arc of d I (d 2) from which a token is removed by

(P (in either Oq1cp2 or &kP29 1 . Then there is a token on b in

S82and S-0 (S-cfp1 and SOe) (3)

If b is an output arc of actor d, then there are the same number of

firings of d in 0(p, and %p2 as in 0 [(2)], so

(5) Source(b,S,q41) - Source(b,S,O) (Source(b,S, ft2) - Source(b,S,O))

(4)+LeAua 7.1-3

(6) All of the entries in o)S8 are in each of co(S,0 1p2) and wS,9p2q1)

(7) There is an entry with value v and transfer (s, Det(Ex(d,k),J)) in

(O(SOq1q02) that is not in o(s,e8) if f d - dl, p is the k thfiring

of d 1 In ftlp2 ' , removes a taken of value v from b, the number-jI
input arc of di, and s - Source(b,S,O), or d - d 2' (2 is the kt

firing of d 2 In &p1lp2 - 92 remves a token of value v fro~m b, d 2 's

number-j input arc, and s - Source(b,SO0p1) iff d - d1., pl is the

k th firing of d1 .in Gt'2l' 01 removes a token of value v from b,

the number-i Input arc of di, in 0cp 2 91, and s - Source(b,S. ft2)

[(2)+(3)+(5)]J, or d - d 2 ' 42 is the k th firing of d 2 in ft2'PL' V2

removes a token of value v from b, the number-j Input arc of d2

-558-

and a = Source(b,SO) [(2)+(3)+(5)] iff there is an entry with value

v and transfer (a, Dst(Ex(d,k),j)) in r(S,O2(p1) which is not in

Therefore, SO(,0plp 2) contains the same set of entries as c(S,0T2Tj)

[(6)+(7)].

Induction step: Assume that A, B, and C are true for prefix A of S.

0 5JAI < IEI, and consider prefix &p of E.

(8) i2p 1 is a firing sequence starting In S

(9) Let d be the actor of which p is a firing. Then d is enabled in

S' 2PlA (8)

(10) Enabling conditions for an actor are a function solely of state

Defe. 3.3-6+2.1-4

(11) S'f 1cp2 A is identical to L'at2 l, ind. hp. B

d is enabled in S*o1PP 2A [(8)+(10)+(9)), and 4 Is a (opy and p - (d,(p,n))

- (p,n) is not in fl in Se'p 2 TlA [(8)+Defs. 2.3-1+2.2-5] - (p,n) is not

in 17 in S'epIp2 A [(11)] - (p,n) can be added to r1 in going to Sfe~l 2&p

[Def. 2.2-51. Therefore, tl(P2 p Is a firing sequence starting In S

[id. hyp. A+Def. 2.3-1.

The state after a state transition depends only on the state before the

transition, the actor chosen to fire, and if that Is a Copy, the pair

(p,n) chosen to be added to TI. Therefore,

(12) Sotlf 2&p is identical to S*.e 2 p1 &p

(13) If d is a gate, then 9 has the sane control input in both 0c 1q2 &p

and 002(PlAV(1

(14) c(S,002@IA) is a prefix of w(S,ft2 o1 &p) and &(SetfP2A) ts a prefix

of 00(S,901 412 60)

-5 59-

(15) Let b be any arc from which p removes a token in either &P 2'PlAT or

ftl 02& Then there is a token on b in both S't2 Plb and &02A

H(12)]. If b is an output arc of an actor, then there are the sam

number of firings of that actor in OopAand (ke(2&, s0

Source(b,S,feq,2 P1) - Source(bS,OqyPl2A) [Lemma 7.1-3)

(16) There is an entry with value v and transfer (s, Dst(Ex(d,k),J)) in

cO(SOql(P2&P) which is not in 0o(SO(P.p 2 A) if f p is the k th firing

of d in e&P1(2&P, it remves a token of value v from b, the number-j

input are of d, in e(p 1924'p and s Source(b S'e(Y 1(2 4) if f (p is the

k thfiring of d in (42VIP'p it removes a token of value v from b,

the number-j input arc of d, in Op2(PIAp [(13)1-(11)] and s is

Source(bSO(PjP1) [(15)1 if f there is an entry with value v and

transfer (a, Dst(Ex(d~k).J)) in cw(S,&pP&p) which is not in

0)(S' 2 9P1A)

Therefore, co(S, (k 'P p contains the same set of e. .Aes as w(S 0cp1 (P2 A)

[(14)+(16)J. Thus it is proven by induction that

(17a) 2' is a firing sequence starting in S

(17b) S,21 and 5*2 are identical states

(17c0 co(S,2') contains the same set of entries as co(S,2)

Since 2 is halted, there is no actor enabled in S*2 (Def. 2.3-1], so there

is no actor enabled in S-2' [(10)+(17b)], s0 2' is a halted firing

sequence starting in S [(17a)].

(18) a)(S,Q) is a prefix of n(S,2) and co(S,2') is a prefix of rn(S,Q')

Alg. 4.3-1

Let b be any arc which holds a token in S*2 or S-21. Then b holds a token

in both S*2and S,9 [(17b). If b is an output arc of an actor d, there

-560-

are the se number of f irins, of d in 2 - 09p as in S2' - (lk2?' s0

Source(bS,2) - Source(b,S,2') [Lears. 7.1-3]. Therefore,

(19) there is an entry with value v and transfer (s, d) in in(S,2') which

is not in co(S,2') if f there is an arc b which holds a token of value

v In S12', a - Source(b,S,2'), and d is a certain fixed function

of b [Aig. 4.3-1] if f there is an arc b which holds a token of

value v in S-2 [(17b)J, a - Source(bS2) and d is a certain

fixed function of b if f there is an entry with value v and transfer

(s, d) in in(S,2) which is not in co(S,2) [Aig. 4.3-11

Thus, rj(S,2') contains the same set of entries as TI(S,2) [(18)+(19)].

-561-

Bibliography

[1] Ackerman, W.B. "A Structure Processing Facility for Data Flow
Computers." Proceedings of the 1978 International Conference
on Parallel Processing. Wayne State University, Aug. 1978,
pp. 168-172.

[2] Adams, D.A. "A Model for Parallel Computations." In Parallel
Processor Systems, Technologies, and Applications.
Ed. L. C. Hobbs, et al. New York: Spartan Books, 1970,
pp. 311-334.

[3] Arvind and K.P. Gostelow. A New Interpreter for Data Flow Schemas
and Its Implications for Computer Architecture. Technical
Report #72, Dept. of Information and Computer Science,
University of California, Irvine, Oct. 1975.

[4] Arvind and K.P. Gostelow. "A Computer Capable of Exchanging
Processors for Time." Information Processing 77. New York:
North-Holland, 1977, pp. 849-854.

[5] Ashcroft, E.A. "Proving Assertions about Parallel Programs."
Journal of Computer and System Science, vol. 10, no. 1
(Jan. 1975), pp. 110-135.

[6] Campbell-Grant, I. The Controlled Execution of Parallel Programs
on Structured Data. S.M. Thesis, Dept. of Electrical
Engineering, M.I.T., January 1971.

[7] Codd, E.F. "A Relational Model of Data for Large Shared Data Banks."
Communications of the ACM, vol. 13, no. 6 (June 1970),
pp. 377-397.

[8) Davis, A.L. "The Architecture and System Method of DDMI:
A Recursively Structured Data Driven Machine." Proceedings of
the Fifth Annual Symposium on Computer Architecture. Palo Alto,
Calif., April 1978, pp. 210-215.

[9] Denning, P.J. "Virtual Memory." Computing Surveys, vol. 2, no. 3
(Sept. 1970), pp. 153-189.

[10] Denning, P.J. "On the Determinacy of Schemata." Record of the
Project MAC Conference on Concurrent Systems and Parallel
Computation. New York: ACM, 1970, pp. 143-147.

i '

-562-

[11] Dennis, J.B. "Programing Generality, Parallelism, and Computer
Architecture." Computation Structures Group Memo 32, M.I.T.
Laboratory for Computer Science, August 1968. Also in
Information Processing 68. Amsterdam: North-Holland, 1969,
pp. 484-492.

[12] Dennis, J.B. "First Version of a Data Flow Procedure Language."
Computation Structures Group Memo 93-1, M.I.T. Laboratory for
Computer Science, August 1974.

[13] Dennis, J.B. and J.B. Fosseen. "Introduction to Data Flow Schemas."
Computation Structures Group Memo 81, M.I.T. Laboratory for
Computer Science, June 1973.

[14] Dennis, J.B. and D.P. Misunas. "A Preliminary Architecture for a
Basic Data-Flow Processor." Proceedings of the Second
Symposiwn on Computer Architecture. University of Houston,
1975, pp. 126-132.

(151 Dennis, J.B., D.P. Misunas, and C.K. Leung. "A Highly Parallel
Processor Using a Data Flow Machine Language." Computation
Structures Group Memo 134, M.I.T Laboratory for Computer
Science, January 1977.

[16] Deutsch, L.P. and D.G. Bobrow. "An Efficient, Incremental,
Automatic Garbage Collector." Commiunications of the ACM,
vol. 19, no. 9 (Sept. 1976), pp. 522-526.

[17] Fox, P.S. Representation of Parallel Computation on Data Structures.
S.M. and E.E. Thesis, Dept. of Electrical Engineering, M.I.T.,
January 1973.

[18] Gertz, J.L. HierarchicaZ Associative memories for ParaZZeZ
Computation. Ph.D. Thesis, Dept. of Electrical Engineering,
M.I.T., June 1970. Also MAC-TR-69, M.T T. Laboratory for
Computer Science.

[191 Greif, I. Semantics of Communicating ParaleZ Processes. Ph.D.
Thesis, Dept. of Electrical Engineering and Computer Science,
M.I.T., Aug. 1975. Also MAC-TR-154, M.I.T. Laboratory for
Computer Science.

J201 Gurd, J. and I. Watson. "A Multilayered Data Flow Computer
Architecture." Proceedings of the 19?7 InternationaZ Conference
,m FaraZZeZ Processing. Wayne State University, Aug. 1977,
p. 94.

fv eaklwycs, I.T. Semantioe of Data Base Sjetems. Ph.D. Thesis,
oept. of Electrical Engineering, M.I.T., June 1973. Also
M'A-Tt-l12. M.I.T. Laboratory for Computer Science.

-563-

[22] Kahn, G. "The Semantics of a Simple Language for Parallel
Programming." Itfor vation Processing 74. Amsterdam:
North-Holland, 1974, pp. 471-475.

[23] Karp, R.M. and R.E. Miller. "Properties of a Model for Parallel
Computations: Determinacy, Termination, Queuing." SIAM
Journal of Applied Mathematics, vol. 14, no. 6 (Nov. 1966),
pp. 1390-1411.

[24] Karp, R.H. and R.E. Miller. "Parallel Program Schemata." Journal
of Computer and System Science, vol. 3, no. 4 (May 1969),
pp. 167-195.

(25] Knuth, D.E. Fundumental Algorithms, 2nd ed. Vol. 1 of The Art
of Computer Programming. Reading, Mass.: Addison-Wesley, 1973.

[26] Korn, G.A. Minicomputers for Engineers and Scientists. New York:
McCraw-Hill, 1973.

[271 Kosinski, P. "Mathematical Semantics and Data Flow Programming."
Proceedings of the 3rd ACM Symposium on Principles of
Progranmming Languages. Atlanta, 1976, pp. 175-184.

[281 Luconi, F.L. Asynchronous Computational Structures. Ph.D. Thesis,
Dept. of Electrical Engineering, M.I.T., Feb. 1968. Also
MAC-TR-49, M.I.T. Laboratory for Computer Science.

(29] Richards, H., Jr. and R.J. Zingg. "The Logical Structure of the
Memory Resource in the SYMBOL-2R Computer." Proceedings of the
High Level Language Computer Architecture Symposium. College
Park, Md., 1973, pp. 1-10.

(30] Rodriguez, J.E. A Graph Model for Parallel Computation. Ph.D.
Thesis, Dept. of Electrical Engineering, M.I.T., Sept. 1967.
Also MAC-TR-64, M.I.T. Laboratory for Computer Science.

[31] Rumbaugh, J. A Parallel Asynchronous Computer Architecture for
Data Flow Programs. Ph.D. Thesis, Dept. of Electrical
Engineering and Computer Science, M.I.T., May 1975. Also
MAC-TR-150, M.I.T. Laboratory for Computer Science.

[32] Rumbaugh, J. "A Data Flow Multiprocessor." IEEE Transactions on
Computers, vol. C-26, no. 2 (Feb. 1977), pp. 138-146.

[33] Schroeder, M.A. and R.A. Meyer. "A Distributed Computer System
Using a Data Flow Approach." Proceedings of the 1977
International Conference on Parallel Processing. Wayne State
University, Aug. 1977, p. 93.

-564-

[341 Slutz, D.R. The Flow~ Graph Schema~ta ModeL of Parallel Computation.
Ph.D. Thesis, Dept. of Electrical Engineering, M.I.T., Sept.
1968. Also MAC-TR-53, M.I.T. Laboratory for Computer Science.

[35] Syre, J.C., D. Coate, and N. Hifdi. "Pipelining, Parallelism, and
Asynchronism in the LAU System." Proceedings of the 1977
International Conference on Parallel Processing. Wayne State
University, Aug. 1977, pp. 87-92.

[36] Thurber, K.J. and P.C. Patton, Data Structures and Computer
Architecture. Lexington, Mass.: Lexington Books, 1977.

-565-

Biographical Note

David L. Isaman was born on August 15, 1947, in Endicott, New York.

He attended school in Petaluma and San Jose, California, graduating

from Leigh High School, San Jose, in 1964. In 1968, he received the

B.S. degree in Engineering (Electrical) from the California Institute

of Technology, graduating with honors. He received an NSF Graduate

Fellowship to attend the Massachusetts Institute of Technology, gaining

an M.S. degree in 1970. From 1975 to 1978, he was a member of the

computer science faculty at the University of California, San Diego.

.. . ."i)" I 1

